

F O U N D A T I O N

®

O

P
C

 U
A

 C
o

m
p

a
n

io
n

-S
p

e
c

ific
a

tio
n

OPC 30050

OPC UA for PackML

RC 1.01

2020-07-12

Standard
Type:

OPC UA Information
Model For PackML

Comments:

Title: OPC Unified Architecture

for PackML
Date: 07.July 2020

Version: RC 1.01 Software: MS-Word

Editors: Brandl, Dennis
Hunkar, Paul
Soehner, Heiko

Source: OPC 30050 - UA Companion
Specification for Packml RC
1.01.docx

Owner: OPC UA PackML WG Status: RC

Document History

Version Date Reason COMMENTS Clause/
Subclause

Proposed change

1.00.00 04/14/2018 Initial Initial Release

1.00.01 11/15/2018 Format fixes Minor formatting fixes

1.01.00 05/27/2020 Fixes &
modifications

Several fixes in wording and types,
harmonization with TR88

CONTENTS

Page

1 Scope ... 9

2 Normative References ... 9

3 Terms, definitions and conventions ... 10

3.1 Overview ... 10

3.2 OPC 10000-1 terms ... 10

3.3 OPC 10000-3 terms ... 10

3.4 OPC 10000-8 .. 11

3.5 OPC 10000-9 .. 11

3.6 OPC UA PackML Terms .. 11

3.6.1 PackML<Term> .. 11

3.6.1.1 General .. 11

3.6.1.2 PackMLUnit .. 11

3.6.1.3 PackMLTag .. 11

3.6.1.4 PackMLStateModel ... 11

3.6.1.5 PackMLMode .. 11

3.7 Abbreviations and symbols .. 11

3.8 OPC UA Notation .. 12

4 Concept .. 13

4.1 Overview ... 13

4.2 PackML Summary ... 14

4.2.1 Introduction .. 14

4.2.2 Why PackML? .. 14

4.2.3 PackML Elements .. 15

4.2.4 Standard Modes ... 15

4.2.5 Standard States ... 16

4.2.6 Standard Tag Names ... 16

4.2.7 PackML Object Model .. 16

4.2.7.1 Overview .. 16

4.2.7.2 Command Tags .. 16

4.2.7.3 Status Tags .. 16

4.2.7.4 Admin Tags .. 16

4.2.8 Standard Tag Values .. 16

4.2.8.1 Overview .. 16

4.2.8.2 Machine Speed ... 16

4.2.8.3 Material Interlock .. 17

4.2.8.4 Remote Interface Structure ... 17

4.3 OPC UA Summary ... 17

4.3.1 Introduction .. 17

4.3.2 What is OPC UA? ... 17

4.3.3 Basics of OPC UA .. 18

4.3.4 Information Modelling in OPC UA ... 18

4.3.4.1 Concepts .. 18

4.3.4.2 Namespaces .. 22

4.3.4.3 Companion Specifications .. 22

5 Modelling Approach of PackML ... 24

OPC 30050: PackML ii RC 1.01

6 PackML Data Representation Model ... 25

6.1 General ... 25

6.2 Instance AddressSpace ... 26

6.3 Objects and ObjectTypes .. 27

6.3.1 Overview .. 27

6.3.2 PackMLBaseObjectType .. 27

6.3.3 PackMLStatusObjectType .. 28

6.3.4 PackMLAdminObjectType .. 30

6.3.5 StateMachines Overview .. 33

6.3.6 PackMLBaseStateMachineType ... 35

6.3.7 PackMLMachineStateMachineType .. 37

6.3.8 PackMLExecuteStateMachineType... 40

6.4 Variables and VariableTypes ... 43

6.5 DataTypes ... 44

6.5.1 Overview .. 44

6.5.2 ProductionMaintenanceModeEnum .. 44

6.5.3 PackMLCountDataType .. 44

6.5.4 PackMLDescriptorDataType ... 44

6.5.5 PackMLIngredientsDataType .. 45

6.5.6 PackMLProductDataType ... 45

6.5.7 PackMLRemoteInterfaceDataType ... 45

6.6 ReferenceTypes .. 46

6.6.1 HasInterlock ... 46

6.6.2 HasAlarm ... 46

6.6.3 HasAlarmHistory .. 47

6.6.4 HasWarning ... 47

6.6.5 HasStopReason ... 47

6.7 Methods .. 47

6.7.1 Overview .. 47

6.7.2 SetUnitMode Method .. 48

6.7.3 SetMachSpeed Method .. 48

6.7.4 SetProduct Method... 49

6.7.5 Abort Method ... 50

6.7.6 Clear Method ... 50

6.7.7 Stop Method ... 51

6.7.8 Reset Method ... 52

6.7.9 ToComplete Method ... 52

6.7.10 Start Method .. 53

6.7.11 Unhold Method ... 53

6.7.12 Suspend Method .. 54

6.7.13 Unsuspend Method .. 55

6.7.14 Hold Method ... 55

6.7.15 RemoteCommand Method .. 56

6.7.16 SetInterlock Method ... 58

6.7.17 SetParameter Method .. 59

6.8 Alarms ... 59

6.8.1 Overview .. 59

6.8.2 Alarm Tags .. 60

OPC 30050: PackML iii RC 1.01

6.8.2.1 Overview .. 60

6.8.2.2 PackMLAlarmDataType .. 60

6.8.3 Alarm Events.. 60

7 Profile ... 61

7.1 Conformance Unit.. 61

7.1.1 Overview .. 61

7.1.2 Server .. 61

7.1.3 Client ... 62

7.2 Facet ... 63

7.2.1 Overview .. 63

7.2.2 Server .. 64

7.2.2.1 PackML Base Server Facet .. 64

7.2.3 Client ... 65

7.2.3.1 PackML Base Client Facet .. 65

8 Namespaces ... 66

8.1 Namespace Metadata .. 66

8.2 Handling of OPC UA namespaces ... 66

Annex A (normative): PackML Namespace and Mappings .. 68

A.1 Namespace and identifiers for PackML Information Model 68

Annex B (informative): Recommended localized names .. 69

B.1 Recommended state names for StateMachine Variables 69

B.1.1 LocaleId “en” .. 69

B.1.2 LocaleId “de” .. 69

B.1.3 LocaleId “fr” ... 69

Annex C : DataType (Non-Normative) .. 71

C.1 Mapping of elementary data types ... 71

C.2 Mapping of generic data types ... 71

C.3 Mapping of derived data types ... 72

C.3.1 Mapping of enumerated data types .. 72

C.3.2 Mapping of array data types ... 72

Annex D : Revision / Change Log ... 74

D.1 Main changes from V1.00 to V1.01 .. 74

OPC 30050: PackML iv RC 1.01

Figures

Figure 1 – Automated Machines using the ISA 88 Models .. 14

Figure 2 – Mode Management of States ... 16

Figure 3 – The Scope of OPC UA within an Enterprise ... 18

Figure 4 – A Basic Object in an OPC UA Address Space .. 19

Figure 5 – The Relationship between Type Definitions and Instances 20

Figure 6 – Examples of References between Objects ... 21

Figure 7 – The OPC UA Information Model Notation ... 21

Figure 8 – A Visual Representation of the Sample ObjectType ... 23

Figure 9 - System Overview ... 25

Figure 10 - PackML Object Instance Overview ... 26

Figure 11 - PackMLBaseObjectType Overview ... 27

Figure 12 - PackMLStatusObjectType Overview ... 29

Figure 13 - PackMLAdminObjectType Overview ... 31

Figure 14 - PackML StateMachines Overview ... 34

Figure 15 - PackML States ... 35

Figure 16 - PackMLBaseStateMachineType illustration .. 36

Figure 17 - PackMLMachineStateMachineType illustration ... 38

Figure 18 – PackMLExecuteStateMachineType illustration ... 40

Figure 19 - Remote Command and Internal systems... 56

Figure 20 - Remote Command – Line and Upstream/Downstream systems 57

OPC 30050: PackML v RC 1.01

Tables
Table 1 – Example ObjectType Definition ... 22

Table 2 – PackMLObjects definition.. 27

Table 3 – PackMLBaseObjectType Definition ... 27

Table 4 – PackMLStatusObjectType Definition ... 29

Table 5 – PackMLAdminObjectType Definition ... 31

Table 6 – PackMLBaseStateMachineType Definition .. 36

Table 7 – PackMLBaseStateMachineType Additional References ... 37

Table 8 – PackMLMachineStateMachineType Definition ... 38

Table 9 – PackMLMachineStateMachineType Additional References 39

Table 10 – PackMLExecuteStateMachineType Definition .. 41

Table 11 – PackMLExecuteStateMachineType Additional References 43

Table 12 – ProductionMaintenanceModeEnum values .. 44

Table 13 – PackMLCountDataType Structure ... 44

Table 14 – PackMLDescriptorDataType Structure... 45

Table 15 – PackMLIngredientsDataType Structure ... 45

Table 16 – PackMLProductDataType Structure .. 45

Table 17 – PackMLRemoteInterfaceDataType Structure ... 46

Table 19 – HasInterlock reference type .. 46

Table 20 – HasAlarm reference type .. 47

Table 21 – HasAlarmHistory reference type .. 47

Table 22 – HasWarning reference type ... 47

Table 23 – HasStopReason reference type... 47

Table 24 - SetUnitMode Method Parameters .. 48

Table 25 - SetUnitMode Method Result Codes ... 48

Table 26 - SetUnitMode Method AddressSpace Definition .. 48

Table 27 - SetMachSpeed Method Parameters ... 48

Table 28 - SetMachSpeed Method ResultCodes ... 49

Table 29 – SetMachSpeed Method AddressSpace Definition .. 49

Table 30 - SetProduct Method Parameters ... 49

Table 31 - SetProduct Method Result Codes .. 49

Table 32 – SetProduct Method AddressSpace Definition .. 50

Table 33 - Abort Method result codes ... 50

Table 34 – Abort Method AddressSpace Definition ... 50

Table 35 - Clear method result codes ... 51

Table 36 – Clear Method AddressSpace Definition ... 51

Table 37 - Stop Method result codes .. 51

Table 38 – Stop Method AddressSpace Definition .. 51

Table 39 - Reset Method result codes .. 52

Table 40 – Reset Method AddressSpace Definition .. 52

Table 41 - ToComplete Method result codes .. 52

Table 42 – ToComplete Method AddressSpace Definition ... 53

OPC 30050: PackML vi RC 1.01

Table 43 - Start Method Parameters ... 53

Table 44 - Start Method result codes .. 53

Table 45 – Start Method AddressSpace Definition .. 53

Table 46 - Unhold Method result codes .. 54

Table 47 – Unhold Method AddressSpace Definition .. 54

Table 48 - Suspend Method result codes .. 54

Table 49 – Suspend Method AddressSpace Definition .. 54

Table 50 - Unsuspend Method result codes .. 55

Table 51 – Unsuspend Method AddressSpace Definition .. 55

Table 52 - Hold Method result codes .. 55

Table 53 – Hold Method AddressSpace Definition .. 56

Table 54 - RemoteCommand Method Parameters... 57

Table 55 - RemoteCommand Method result codes .. 57

Table 56 – RemoteCommand Method AddressSpace Definition .. 58

Table 57 - SetInterlock Method Parameters .. 58

Table 58 - SetInterlock Method result codes ... 58

Table 59 – SetInterlock Method AddressSpace Definition ... 59

Table 60 - SetParameter Method Parameters ... 59

Table 61 - SetParameter Method result codes .. 59

Table 62 – SetParameter Method AddressSpace Definition .. 59

Table 63 – PackMLAlarmDataType Structure ... 60

Table 64 – PackML Server Information Model .. 61

Table 65 – PackML Client Information Model .. 62

Table 66 - PackML Profiles .. 63

Table 67 - PackML Base Functionality Server Facet ... 64

Table 68 - PackML Base Client Facet ... 65

Table 69 – NamespaceMetadata Object for this Specification ... 66

Table 70 – Namespaces used in a PackML Server ... 66

Table 71 – Namespaces used in this specification .. 67

Table 72 – Mapping IEC 61131-3 elementary data types to OPC UA built in data types 71

Table 73 – Mapping IEC 61131-3 generic data types to OPC UA data types 72

OPC 30050: PackML vii RC 1.01

OPC FOUNDATION

UNIFIED ARCHITECTURE –

FOREWORD

This specification is the specification for developers of OPC UA applications. The specification is a
result of an analysis and design process to develop a standard interface to facilitate the development
of applications by multiple vendors that shall inter-operate seamlessly together.

Copyright © 2006-2017, OPC Foundation, Inc.

AGREEMENT OF USE

COPYRIGHT RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and
communications regulations and statutes. This document contains information which is protected by
copyright. All Rights Reserved. No part of this work covered by copyright herein may be reproduced
or used in any form or by any means--graphic, electronic, or mechanical, including photocopying,
recording, taping, or information storage and retrieval systems--without permission of the copyright
owner.

OPC Foundation members and non-members are prohibited from copying and redistributing this
specification. All copies must be obtained on an individual basis, d irectly from the OPC Foundation
Web site HTUhttp://www.opcfoundation.org or from the OMAC website http://omac.org/ UT .

PATENTS

The attention of adopters is directed to the possibility that compliance with or adop tion of OPC
specifications may require use of an invention covered by patent rights. OPC shall not be responsible
for identifying patents for which a license may be required by any OPC specification, or for conducting
legal inquiries into the legal validity or scope of those patents that are brought to its attention. OPC
specifications are prospective and advisory only. Prospective users are responsible for protecting
themselves against liability for infringement of patents.

WARRANTY AND LIABILITY DISCLAIMERS

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY
CONTAIN ERRORS OR MISPRINTS. THE OPC FOUDATION AND OMAC MAKES NO WARRANTY
OF ANY KIND, EXPRESSED OR IMPLIED, WITH REGARD TO THIS PUBLICATION, INCLUDING
BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF
MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE. IN
NO EVENT SHALL THE OPC FOUNDATION OR OMAC BE LIABLE FOR ERRORS CONTAINED
HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL, CONSEQUENTIAL, RELIANCE OR
COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR USE, INCURRED BY
ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING, PERFORMANCE,
OR USE OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is
borne by you.

RESTRICTED RIGHTS LEGEND

This Specification is provided with Restricted Rights. Use, duplication or disclosure by the U.S.
government is subject to restrictions as set forth in (a) this Agreement pursuant to DFARs 227.7202 -
3(a); (b) subparagraph (c)(1)(i) of the Rights in Technica l Data and Computer Software clause at

http://www.opcfoundation.org/

OPC 30050: PackML viii RC 1.01

DFARs 252.227-7013; or (c) the Commercial Computer Software Restricted Rights clause at FAR
52.227-19 subdivision (c)(1) and (2), as applicable. Contractor / manufacturer are the OPC
Foundation,. 16101 N. 82nd Street, Suite 3B, Scottsdale, AZ, 85260-1830 and OMAC 11911 Freedom
Drive, Suite 600, Reston, VA 20190

COMPLIANCE

The OPC Foundation shall at all times be the sole entity that may authorize developers, suppliers and
sellers of hardware and software to use certi fication marks, trademarks or other special designations
to indicate compliance with these materials. Products developed using this specification may claim
compliance or conformance with this specification if and only if the software satisfactorily meets t he
certification requirements set by the OPC Foundation. Products that do not meet these requirements
may claim only that the product was based on this specification and must not claim compliance or
conformance with this specification.

Trademarks

Most computer and software brand names have trademarks or registered trademarks. The individual
trademarks have not been listed here.

GENERAL PROVISIONS

Should any provision of this Agreement be held to be void, invalid, unenforceable or illegal by a court,
the validity and enforceability of the other provisions shall not be affected thereby.

This Agreement shall be governed by and construed under the laws of the State of Minnesota,
excluding its choice or law rules.

This Agreement embodies the entire understanding between the parties with respect to, and
supersedes any prior understanding or agreement (oral or written) relating to, this specification.

ISSUE REPORTING

The OPC Foundation strives to maintain the highest quality standards for its published specificat ions,
hence they undergo constant review and refinement. Readers are encouraged to report any issues
via info@omac.org in the OPC Foundation Mantis system and view any existing errata here:
HTUhttp://www.opcfoundation.org/errata UTH

Revision 1.01 Highlights

The focus of V1.01 was on cleaning up data types, simplifying, correcting spelling mistakes and
harmonizing with OMAC PackML TR88 - version 2015. The consideration of corrections etc. instead
of compatibility was more in focus, because version 1.0 is currently not in use in productive
environment.

Extended explanation and list of revisions listed in Annex D

mailto:info@omac.org
http://www.opcfoundation.org/errata

OPC 30050: PackML 9 RC 1.01

1 Scope

This standard is an extension of the overall OPC Unified Architecture standards and defines an
information model that conforms to the PackML object model defined in ISA-TR88.00.02-2015 Machine
and Unit States: An Implementation Example of ISA-88, and in the OMAC (Organization for Machine
and Automation Control) PackML Unit/Machine Implementation Guide, referred to collectively as
PackML. The PackML object model describes a standard way to monitor and control a wide variety of
production equipment, following the models defined in the ANSI/ISA 88 standard. ISA-TR88.00.02 has
been implemented by manufacturers and machine builders worldwide on various control platforms to
increase speed to production, ease line integration and improve reliability. PackML defines standard
state models for external control of a piece of equipment, a standard mode model for determining
which state model to follow, standard tag names and tag values to command the equipment, determine
the status of the equipment, and perform administration of the equipment. The PackML goal is to
provide an easy to use and easy to test method of integration of equipment control, into a production
line.

The modelling targets of this standard shall exist in an OPC UA AddressSpace. This standard does
not consider the modelling targets that are identified in other standards or vendor specifications.

2 Normative References

The following referenced documents are indispensable for the application of this standard. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced
document (including any amendments) applies.

OPC 10000-1, OPC Unified Architecture - Part 2: Overview and Concepts

http://www.opcfoundation.org/UA/Part1/

OPC 10000-2, OPC Unified Architecture - Part 2: Security Model

http://www.opcfoundation.org/UA/Part2/

OPC 10000-3, OPC Unified Architecture - Part 3: Address Space Model

http://www.opcfoundation.org/UA/Part3/

OPC 10000-4, OPC Unified Architecture - Part 4: Services

http://www.opcfoundation.org/UA/Part4/

OPC 10000-5, OPC Unified Architecture - Part 5: Information Model

http://www.opcfoundation.org/UA/Part5/

OPC 10000-6, OPC Unified Architecture - Part 6: Mappings

http://www.opcfoundation.org/UA/Part6/

OPC 10000-7, OPC Unified Architecture - Part 7: Profiles

http://www.opcfoundation.org/UA/Part7/

OPC 10000-8, OPC Unified Architecture - Part 8: Data Access

http://www.opcfoundation.org/UA/Part8/

OPC 10000-9, OPC UA Specification: Part 9 – Alarms & Conditions

http://www.opcfoundation.org/UA/Part9/

OPC 10000-10, OPC UA Specification: Part 10 - Programs

http://www.opcfoundation.org/UA/Part10/

OPC 10000-11, OPC Unified Architecture - Part 11: Historical Access

http://www.opcfoundation.org/UA/Part11/

OPC UA for PackML 10 RC 1.01

OPC 10000-12, OPC Unified Architecture - Part 12: Discovery and Global Services

http://www.opcfoundation.org/UA/Part12/

OPC 10000-13, OPC Unified Architecture - Part 13: Aggregates

http://www.opcfoundation.org/UA/Part13/

ISA-TR88.00.02-2015: Machine and Unit States: An implementation example of ANSI/ISA-88.00.01

https://www.isa.org/store/ansi/isa-tr880002-2015,-machine-and-unit-states-an-implementation-
example-of-ansi/isa-880001-/43761120

ANSI/ISA–88.01–1995: Batch Control Part 1: Models and Terminology

https://www.isa.org/store/products/product-detail/?productId=116649

OPC 30000, UA companion specification for IEC61131-3

https://opcfoundation.org/developer-tools/specifications-unified-architecture/opc-unified-
architecture-plcopen-information-model/

3 Terms, definitions and conventions

3.1 Overview

It is assumed that basic concepts of OPC UA information modelling are understood in this specification.
This specification will use these concepts to describe the PackML object models. The concepts and
terms used to describe the OPC UA information models are defined in other parts and listed in the
following sections. Note that OPC UA terms and terms defined in this standard are italicized in the

specification.

3.2 OPC 10000-1 terms

The following terms defined in OPC 10000-1 apply.

 AddressSpace

 Attribute

 Client

 Message

 Node

 NodeClass

 Object

 ObjectType

 Profile

 Reference

 ReferenceType

 Server

 Variable

 View

3.3 OPC 10000-3 terms

The following terms defined in OPC 10000-3 apply.

 Hierarchical Reference

 InstanceDeclaration

 ModellingRule

https://www.isa.org/store/ansi/isa-tr880002-2015,-machine-and-unit-states-an-implementation-example-of-ansi/isa-880001-/43761120
https://www.isa.org/store/ansi/isa-tr880002-2015,-machine-and-unit-states-an-implementation-example-of-ansi/isa-880001-/43761120
https://www.isa.org/store/products/product-detail/?productId=116649
https://opcfoundation.org/developer-tools/specifications-unified-architecture/opc-unified-architecture-plcopen-information-model/
https://opcfoundation.org/developer-tools/specifications-unified-architecture/opc-unified-architecture-plcopen-information-model/

OPC 30050: PackML 11 RC 1.01

 OptionalPlaceholder

 MandatoryPlaceholder

 DataVariable

 Property

 SourceNode

 TargetNode

 TypeDefinitionNode

 VariableType

3.4 OPC 10000-8

The following terms defined in OPC 10000-8 apply.

 AnalogItem

 EngineeringUnits

3.5 OPC 10000-9

The following term defined in OPC 10000-9 apply.

 Operator

3.6 OPC UA PackML Terms

3.6.1 PackML<Term>

3.6.1.1 General

This standard adopts adding a PackML prefix to all PackML defined terms that are used in this standard
that are also defined by OPC. The <Term> is the terminology defined by PackML. This allows the
terminology used in PackML to be easily distinguished from terminology defined in OPC UA.

3.6.1.2 PackMLUnit

a concept that defines a collection of associated modules that can carry out one or more major
processing activities.

Note: in PackML Unit and Machine are used to define the same thing and can at times be interchanged.

3.6.1.3 PackMLTag

a concept that represents named data element that is used to command, read status, or provide
administration of a unit.

3.6.1.4 PackMLStateModel

a concept that represents a state model of the operational state of a unit .

3.6.1.5 PackMLMode

a concept that represents the mode of operation of a unit, indicating which state model is currently
active.

3.7 Abbreviations and symbols

DA Data Access
AC Alarm and Condition
HA Historical access
PLC Programmable Logic Controllers
DCS Distributed Control Systems
OCS Open Control Systems

OPC UA for PackML 12 RC 1.01

3.8 OPC UA Notation

This standard uses the ModellingRules OptionalPlaceholder and MandatoryPlaceholder to define
instance declarations, and defines a rule that the BrowseName of instance declarations having an
OptionalPlaceholder or MandatoryPlaceholder ModellingRule be enclosed in angle brackets (<>).
Originally, this rule is defined in OPC 10000-3 as a recommendation. This naming rule is also used in
the description of a table. The BrowseName of a Node that has OptionalPlaceholder or
MandatoryPlaceholder ModellingRule are described with angle brackets, which denotes that the name
is not fixed. For example, BrowseName of Property is described as <PropertyName> in graphical
notation and tables results in a Property that can have any name.

OPC 30050: PackML 13 RC 1.01

4 Concept

4.1 Overview

When the ANSI/ISA–88.01–1995: standard was applied to applications across a plant, there was a
need to align the terminologies, models and key definitions between different process types:
continuous, batch, and discrete processes. Discrete processes involve machines found in th e
packaging, converting, and material handling applications. The operation of these machines is typically
defined by the OEM, system integrator, end user, or is industry specific.

OMAC (Organization for Machine Automation and Control) created a task group with members from
technology providers, OEMs, system integrators, and end users to generate the PackML guidelines as
a method to show how the ANSI/ISA–88.01–1995: concepts could be extended into packaging
machinery and other types of machines typically used in assembly lines, filling lines, and other
production lines.

The purpose of PackML is to:

 Define a standard state-based model for automated machines.

 Identify definitions for common terminology.

 Explain to practitioners how to use state programming for automated machines.

 Provide references to actual implementation examples and templates from automation and
control vendors.

 Identify a common tag structure for automated machines in order to:
o Provide for “connect & pack” functionality
o Provide functional interoperability and a consistent look and feel across the plant floor.
o Provide consistent tag structure for connection to plant MES and enterprise systems.

If automated machinery is modelled in an ANSI/ISA–88.01–1995: physical hierarchy, the example
mapping shown in Figure 1 is possible, from ISA-TR88.00.02-2015. The example in this document will
assume that a machine can represent the unit level in the ISA88 hierarchy.

OPC UA for PackML 14 RC 1.01

Machine Layout

Form Fill Seal Bagger

Weigh Scale

Bag Forming

Feed Rollers

Sealer / Cutter

Enterprize

Site

Area

Process
 Cell

Unit

Equipment
Models

Control
Models

Packing Lines

Machine

Station
of a Filler

Actuator
Sensor

Positioner

Figure 1 – Automated Machines using the ISA 88 Models

In the figure, the OPC UA interface and the PackML model might exist at the machine level. The
communication and interactions below this level are machine specific. Some machines might have
multiple Units which communicate using OPC UA / PackML, but they might also only expose the
Machine using the OPC UA PackML interface to other Machines in packaging line or to the Packaging
line controller.

4.2 PackML Summary

4.2.1 Introduction

For an OPC UA user that may not be familiar with PackML, the following section provides a brief
overview of key features that PackML provides along with a little background related to PackML and
the concepts behind it.

4.2.2 Why PackML?

The Organization for Machine Automation and Control (OMAC) was formed to help manufacturers
work together to find new and innovative ways to be successful in their production operations. OMAC
brought together leading manufacturers representing End-User Manufacturers, OEM Machine Builders,
System Integrators, Technology Providers, and Non-Profit / Government Agency organizations to
address issues that confront global manufacturing today. OMAC aims to collectively derive common
solutions for both technical and non-technical issues in the development, implementation, and
commercialization of open, modular architecture control technologies.

OPC 30050: PackML 15 RC 1.01

Manufacturing systems are made of collections of equipment, often from multiple suppliers, usually
each with its own specific and custom interface. In order to make this collection of equipment operate
together as a complete system, there is an integration effort required, and it is often time consuming
and custom for each supplier.

PackML stands for Packaging Machine Language and is an interface standard originally used in batch
manufacturing in the packaging industry but which is now used in multiple different types of productio n
and assembly lines. The primary objective of PackML is to bring a common “look and feel” and
operational consistency to all machines that make up a production line. PackML provides:

• Standard defined machine states and operational flow

• Overall Equipment Effectiveness (OEE) data

• Root Cause Analysis (RCA) data

• Flexible recipe schemes and common SCADA or MES inputs

PackML has been implemented in multiple formats for different industrial networks, with a proven
benefit of reducing the integration time for adding new equipment to existing lines, or installing new
lines.

4.2.3 PackML Elements

In order to provide a standard interface PackML defines three elements:

1) PackML Unit Modes - A standard model that is used to control which state is being used
(Producing, Maintenance, Manual, ….).

2) PackML StateMachine - Standard state machine models that are used to represent the internal
operational state of the machine/unit. [note: StateMachine may change for Units and for the
Mode of the unit]

3) PackTags -A standard set of tag names and extension used to control the mode and state,
send commands to the machine/unit, and monitor the status of the machine/unit.

These three aspects will be translated to OPC UA models

4.2.4 Standard Modes

A Unit can be in different modes, for example Producing, Maintenance, Manual, Clean, Calibration,
etc. A Unit control mode is an ordered subset of states and commands that determines the strategy
carried out by the Unit process, as shown in Figure 2. For example, the producing mode is used when
the unit is producing, a manual mode may be used when the unit is being manually controlled for
troubleshooting.

The states that a unit can be in depends on the mode. In the producing mode there is a state called
SUSPENDED, where the equipment is not running due to an external event, but this state is not
available in maintenance mode, neither is the COMPLETE state.

Producing Mode Maintenance

Mode

Manual Mode

Mode

Managem

….

OPC UA for PackML 16 RC 1.01

Figure 2 – Mode Management of States

PackML includes a standard manner of changing modes as well as displaying the current mode. For
additional information please see the ISA-TR88.00.02-2015.

4.2.5 Standard States

PackML Interface State Model is used to visualize and control the state of a unit/machine. The PackML
Interface State Model is a state model that represents the Unit/Machine State in a standardized manner.
The interface description is based on a state model, a state description and related control commands.
For additional information see ISA-TR88.00.02-2015.

4.2.6 Standard Tag Names

At its core, PackML is the definition of standard tag names and standard values for the tags. These
are used to control the state model of the unit (command tags), determine the state and status of the
equipment (status tags), and administer the equipment (admin tags).

4.2.7 PackML Object Model

4.2.7.1 Overview

The PackML object model is composed of a series of tags. These tags can be one of three general
type of tags Command Tags, Status Tags and Administrative Tags.

4.2.7.2 Command Tags

Command tags allow interaction with the state machine and general functionality of the server.
Command tags include changing units, changing state machines . For additional detail see ISA-
TR88.00.02-2015. In OPC UA command tags are generally mapped to Methods.

4.2.7.3 Status Tags

Status tags provide information about the state of the machine or device. This includes feedback from
the commands issued and the general status. For additional detail see ISA-TR88.00.02-2015.

4.2.7.4 Admin Tags

Admin tags provide information about alarming in the machines or device. This include Alarm history
and some summary statistics about the machine or device. For additional detail see ISA-TR88.00.02-
2015.

4.2.8 Standard Tag Values

4.2.8.1 Overview

Several PackTags have specific values defined.

4.2.8.2 Machine Speed

This describes the set point for the current speed of the unit/machine in primary packages per minute.
Keeping speed in a primary package unit of measure (UOM) allows for easier control integration. The
primary package UOM is the normalized rate for the machine, normalized to a value chosen on the
line.

The following example is for a bottle line running at balance line speed of 1000 packages/minute. The
UOM chosen is equivalent to be the actual count of the Filler, or Label er.

Machine Actual Pack Counts Primary Packages (UOM)

Bulk Depalletizer 41.667 (24 pack => 1000/24 = 41.667) 1,000

Filler 1,000 1,000

Labeler 1,000 1,000

Packer 66.667 (15 pack => 1000/15 = 66.667) 1,000

Bulk Depalletizer 41.667 (24 pack => 1000/24 = 41.667) 1,000

OPC 30050: PackML 17 RC 1.01

4.2.8.3 Material Interlock

Indicates materials are ready for processing. It is comprised of a series of bits with 1 equalling ready
or not low, 0 equalling not ready, or low. Each bit represents a different user material. The word
contains bits that indicate when a critical material or process parameter is ready for use. It can also
be used for production, and/or indication of low condition. This information may be sent to the unit
machine at any time as the interlock information changes.

The format and meaning of the material interlock bits are determined by the mac hine/unit supplier, as
shown in the example below:

Machine/Unit Material Interlock Bit # Material Description

Filler 0 500 ml Bag

Filler 1 Flacked Cereal

Labeler 0 Small Box

Labeler 1 500 ml Bag

Labeler 2 Small Box Label

4.2.8.4 Remote Interface Structure

An array of structure elements used for coordinating upstream or downstream machines in a cell with
multiple unit machines.

The array is a length that is equal to the number of machines that will be sending commands. This
could be expanded if a machine is capable of receiving material from multiple upstream and/or
downstream machines, thereby receiving multiple commands and parameters.

This can be used for machine to machine coordination without supervisory control, or for tightly
controlled units under supervisory control. These tags are typically used for consumption within the
unit machine procedure. Specifically, if a remote controller was issuing commands, the commands
would be read by this tag and used in the unit machine.

4.3 OPC UA Summary

4.3.1 Introduction

For PackML users that may not be familiar with OPC UA the following section provides a brief overview
of key features that OPC UA provides.

4.3.2 What is OPC UA?

OPC UA is an open and royalty free set of standards designed as a universal communications protocol.
While there are numerous communication solutions available, OPC UA has several advantages:

 A state of art security model (see OPC 10000-2).

 A fault tolerant communication protocol.

 An information modelling framework that allows application developers to represent their data
in a way that makes sense to them.

OPC UA has a broad scope which delivers for economies of scale for application developers. This
means that a larger number of high quality applications at a reasonable cost are available. When
combined with powerful semantic models such as PackML, OPC UA makes it easier for end users to
access data via generic commercial application.

The OPC UA model is scalable from small devices to ERP systems. OPC UA devices process
information locally and then provide that data in a consistent format to any application requesting data

OPC UA for PackML 18 RC 1.01

- ERP, MES, PMS, Maintenance Systems, HMI, Smartphone or a standard Browser, for examples. For
a more complete overview see OPC 10000-1.

4.3.3 Basics of OPC UA

As an Open Standard, OPC UA is based on standard Internet technologies – TCP/IP, HTTPS, Ethernet,
and XML.

As an Extensible Standard, OPC UA provides a set of services (see OPC 10000-4) and a basic
information model framework. This framework provides an easy manner fo r creating and exposing
vendor defined information in a standard way. More importantly all OPC UA Clients are expected to
be able to discover and use vendor defined information. This means OPC UA users can benefit from
the economies of scale that come with generic visualization and historian applications. This
specification is an example of an OPC UA Information Model designed to meet the needs of developers
and users.

OPC UA Clients can be any consumer of data from another device on the network to browser based
thin clients and ERP systems. The full scope of OPC UA applications are shown in Figure 3.

Browser

Thin Client

Visualization

HMI

Firewall

Cloud

Historian

SCADA

MES

ERP

Device DeviceDevice

Secure

Communication

Across the

Internet

Fast, Non-

Proprietary

Device to

Device

Control to Device

Network

Integration

Integration

with

ERP and MES

OPC
UA
Clients

OPC
UA
Servers
&
Clients

Figure 3 – The Scope of OPC UA within an Enterprise

OPC UA provides a robust and reliable communication infrastructure having mechanisms for handling
lost messages, failover, heartbeat, etc. With its binary encoded data , it offers a high-performing data
exchange solution. Security is built into OPC UA as security requirements become more and more
important especially since environments are connected to the office network or the internet and
attackers are starting to focus on automation systems

4.3.4 Information Modelling in OPC UA

4.3.4.1 Concepts

OPC UA provides a framework that can be used to represent complex information as Objects in an
address space which can be accessed with standard web services. These Objects consist of Nodes
connected by References. Different classes of Nodes convey different semantics. For example, a
Variable Node represents a value that can be read or written. The Variable Node has an associated
DataType that can define the actual value, such as a string, float, structure etc. It can also describe
the variable value as a variant. A Method Node represents a function that can be called. Every Node
has a number of Attributes including a unique identifier called a NodeId and non-localized name called
as BrowseName. An Object representing a ‘Reservation’ is shown in Figure 4.

OPC 30050: PackML 19 RC 1.01

Reservation

Who

When

First Name
“John”

Last Name
“Smith”

Start
“2:00PM”

End
“4:00PM”

Cancel

Object Nodes
convey semantics

 and structure

Method Nodes
define complex

behaviors

Variable Nodes
provide access to data

Figure 4 – A Basic Object in an OPC UA Address Space

Object and Variable Nodes are called Instance Nodes and they always reference a TypeDefinition
(ObjectType or VariableType) Node which describes their semantics and structure. Figure 5 illustrates

the relationship between an Instance and its Type Definition.

The Type Nodes are templates that define all of the children that can be present in an Instance of the
Type. In the example in Figure 5 the PersonType ObjectType defines two children: First Name and
Last Name. All instances of PersonType are expected to have the same children with the same
BrowseNames. Within a Type the BrowseNames uniquely identify the child. This means Client
applications can be designed to search for children based on the BrowseNames from the Type instead
of NodeIds. This eliminates the need for manual reconfiguration of systems if a Client uses Types that

multiple devices implement.

OPC UA also supports the concept of sub typing. This allows a modeller to take an existing Type and
extend it. There are rules regarding sub typing defined in OPC 10000-3, but in general they allow the
extension of a given type or the restriction of a DataType. For example, the modeller may decide that
the existing ObjectType in some cases needs an additional variable. The modeller can create a
Subtype of the object and add the variable. A Client that is expecting the parent type can treat the new
Type as if it was of the parent Type. With regard to DataTypes, if a Variable is defined to have a
numeric value, a sub type could restrict the value to a float.

OPC UA for PackML 20 RC 1.01

Who

First Name
“John”

Last Name
“Smith”

First Name
[String]

Last Name
[String]

Middle Name
“Jacob”

Instances can
be extended

Structure and
semantics can
be inherited

from other types

ObjectType Nodes
are templates that

describe the structure
of an instance

Every Instance Node
has a

TypeDefinition Node
which defines its structure

Semantics: An instance of PersonType represents a human
Structure: An instance of PersonType has a First Name and a Last Name

BaseObjectType

PersonType

Figure 5 – The Relationship between Type Definitions and Instances

References allow Nodes to be connected together in ways that describe their relationships. All
References have a ReferenceType that specifies the semantics of the relationship. References can
be hierarchical or non-hierarchical. Hierarchical References are used to create the structure of Objects
and Variables. Non-Hierarchical are used to create arbitrary associations. Applications can define their
own ReferenceType by creating Subtypes of the existing ReferenceType. Subtypes inherit the
semantics of the parent but may add additional restrictions. Figure 6 depicts several references
connecting different Objects.

OPC 30050: PackML 21 RC 1.01

Joe Sam Dogs Cats

Animals

OrganizesOrganizes HasClassification HasClassification

Kennel #2

Owns

PoodleBreeds

HasClassification

Farmers

Siamese

HasClassification

Fido HasBreedLivesIn

Organizes

Owns

Has

Classification

Non-

Hierarchical

Breeds

HasBreed

LivesIn

Reference Types
can be created

 from other reference types

They can be used to
show hierarchies

 or just relationships

Figure 6 – Examples of References between Objects

The figures above use a notation that was developed for the OPC UA specification. The notation is
summarized in Figure 7. UML representations can also be used; however, the OPC UA notation is less
ambiguous because there is a direct mapping from the elements in the figures to Nodes in the address
space of an OPC UA server.

Object Variable Method View

Symmetric
Reference

Asymmetric
Reference

Hierarchical
Reference

Has
EventSource

Has
Component

Has
TypeDefinition

Has
Subtype

Has
Property

Instances

Types

Standard
References

VariableTypeObjectType DataType ReferenceType

Figure 7 – The OPC UA Information Model Notation

A complete description of the different types of Nodes and References can be found in OPC 10000-3

and the base OPC UA Address space is described in OPC 10000-5.

OPC UA specification defines a very wide range of functionality in its basic information model. It is not
expected that all Clients or Servers support all functionality in the OPC UA specifications. OPC UA
includes the concept of profiles, which segment the functionality into testable certifiable units. This
allows the development of companion specification (such as OPC UA for ISA-95) that can describe

OPC UA for PackML 22 RC 1.01

the subset of functionality that is expected to be implemented. The profiles do not restrict functionality,
but generate requirements for a minimum set of functionality (see OPC 10000-7).

The OPC Foundation also defines a set of information models that provide a basic set of functionality.
The Data Access specification (see OPC 10000-8) provides a basic information model for typical data.
The Alarm and Condition specification (see OPC 10000-9) defines a standard information model for
Alarms and Conditions. The Programs specification (see OPC 10000-10) defines a standard
information model for extending the functionality available via method calls and state machines. The
Historical Access specification (see OPC 10000-11) defines the information model associated with
Historical Data and Historical Events. The aggregates spec ification (see OPC 10000-13) defines a
series of standard aggregate functions that allow a Client to request summary data. Examples of
aggregates include averages, minimums, time in state, Standard deviation, etc.

4.3.4.2 Namespaces

OPC UA allows information from many different sources to be combined into a single coherent address
space. Namespaces are used to make this possible by eliminating naming and id conflicts between
information from different sources. Namespaces in OPC UA have a globally unique string called a
NamespaceUri and a locally unique integer called a NamespaceIndex. The NamespaceIndex is only
unique within the context of a Session between an OPC UA Client and an OPC UA Server. All of the
web services defined for OPC UA use the NamespaceIndex to specify the Namespace for qualified

values.

There are two types of values in OPC UA that are qualified with Namespaces: NodeIds and
QualifiedNames. NodeIds are globally unique identifiers for Nodes. This means the same Node with
the same NodeId can appear in many Servers. This, in turn, means Clients can have built in knowledge
of some Nodes. OPC UA information models generally define globally unique NodeIds for the
TypeDefinitions defined by the information model.

QualifiedNames are non-localized names qualified with a Namespace. They are used for the
BrowseNames of Nodes and allow the same names to be used by different information models without
conflict. The BrowseName is used to identify the children within a TypeDefinitions. Instances of a
TypeDefinition are expected to have children with the same BrowseNames. TypeDefinitions are not
allowed to have children with duplicate BrowseNames; however, instances do not have that restriction.

4.3.4.3 Companion Specifications

An OPC UA companion specification for an industry specific vertical market describes an information
model by defining ObjectTypes, VariableTypes, DataTypes and ReferenceTypes that represent the
concepts used in the vertical market. Table 1 contains an example of an ObjectType definition.

Table 1 – Example ObjectType Definition

Attribute Value

BrowseName WidgetType

IsAbstract False

Reference NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the BaseObjectType from OPC 10000-5.

HasProperty Variable Color String PropertyType Mandatory

HasProperty Variable Flavor LocalizedText PropertyType Mandatory

HasProperty Variable Rank Int32 PropertyType Mandatory

The BrowseName is a non-localized name for an ObjectType.

IsAbstract is a flag indicating whether instances of the ObjectType can be created.

The bottom of the table lists the child nodes for the type. The Reference is the type of reference
between the Object instance and the child Node. The NodeClass is the class of Node. The
BrowseName is the non-localized name for the child. The DataType is the structure of the Value
accessible via the Node (only used for Variable NodeClass Nodes) and the TypeDefinition is the
ObjectType or VariableType for the child.

OPC 30050: PackML 23 RC 1.01

The ModellingRule indicates whether a child is Mandatory or Optional. It can also indicate cardinality.
Note that the BrowseName is not defined if the cardinality is greater than 1. Figure 8 visually depicts
the ObjectType defined in Table 1 along with two instances of the ObjectType.

Widget #1

Color
“Red”

Flavour
“Lemon”

Rank
“2”

Color
[String]

Flavor
[LocalizedText]

Rank
[Int32]

WidgetType

Widget #2

Color
“Blue”

Flavour
“Orange”

Rank
“3”

Figure 8 – A Visual Representation of the Sample ObjectType

OPC UA for PackML 24 RC 1.01

5 Modelling Approach of PackML

The modelling approach for generating an UA model from the PackML specification follows the
following general concepts / suggestions.

In PackML a number of standard tag names and standard values are defined, OPC UA defines
standard types from which any number of instances can be created. Each instance will contain the
same items as defined in the type, allowing easy access for Clients.

 When possible OPC UA constructs will be used to represent parallel PackML concepts including:

 StateMachines to reflect the state of the system

 Methods to issue commands to the Server

 DataTypes

OPC 30050: PackML 25 RC 1.01

6 PackML Data Representation Model

6.1 General

The OPC UA PackML information model is a representation of the PackML data model in OPC
ObjectTypes, VariableTypes, DataTypes and ReferenceTypes.

This model generates standard types. All PackML types will be defined in their own Namespace and
will begin with “PackML” A key point is a standard ObjectType representation of the StateMachines
defined in PackML. The model also defines some standard instances that are expected as a starting
point for this model.

The following conventions apply to ObjectType, VariableType and DataType naming:

 All ObjectTypes include “ObjectType” as part of the name

 All StateMachines will end in “StateMachine”, all States will end in “State”, All Transitions will
end in “Transition”

 All DataTypes that are structures include “DataType” as part of the name, this is to be able to
differentiate them from any VariableTypes that will just end in Type.

 All enumerations will end in “Enum”, to clearly identify that it is an enumeration.

 All base DataTypes (int32, float, …) used in the OPC UA server will be those defined in OPC
UA, see OPC 10000-6 for more detail on the representation of the datatypes. This specification
is typically implemented in a PLC, Annex C provides a non-normative copy of the DataType
mapping described in PLC Open

Machine

OPC UA Server
– with PackML

Model

Upstream Machine

OPC UA Server
– with PackML

Model

Internal Client
(not OPC UA)

U
A

C
lie

n
t

U
A

C
lie

n
t

Downstream Machine

Controller with OPC
UA Server – includes

PackML Model
Includes OPC UA

Client

Internal OPC
UA Client

U
A

C
lie

n
t

Line controller (OPC UA Client)

PLC Including

OPC UA Server and Client

Internal OPC
UA Client

PLC Including

OPC UA Server
Control

logic

Control
logic

Figure 9 - System Overview

Figure 9 illustrates the scope of PackML in a typical environment, with units acting as OPC UA Servers
and a line controller as an OPC UA Client application. It defines a standard set of interfaces to and

OPC UA for PackML 26 RC 1.01

from a unit/machine, so that it can be controlled as an element of an overall production line. It maps
the internal states of the unit into a standard state model, and internal commands into a standard set
of commands, hiding the details of the actual implementation of the unit’s code.

Figure 9 also illustrates another typical example in which units perform peer -to-peer communication
to coordinate the states and modes of an entire line. In this situation, each unit could act as both an
OPC UA Server (of their own local state) and an OPC UA Client to communicate to upstream and

downstream units.

6.2 Instance AddressSpace

Figure 10 provides an overview of the instance object model for PackML

Objects::

FolderType

PackMLObjects::

FolderType

MyMachine::

PackMLBaseObjectType

System 1

Objects::

FolderType

PackMLObjects::

FolderType

Machine1::

PackMLBaseObjectType

System 2

Machine2::

PackMLBaseObjectType

Machine3::

PackMLBaseObjectType

Figure 10 - PackML Object Instance Overview

The OPC UA Server shall have a PackMLObjects folder under the OPC defined Objects folder on a
UA Server. This folder shall contain one or more instances of PackMLBaseObjectType (see 6.3.2 for
definition of PackMLBaseObjectType). A single OPC UA Server might contain a single instance of a

PackML system or it might contain multiple PackML systems.

The PackMLObjects node is formally defined in Table 2.

OPC 30050: PackML 27 RC 1.01

Table 2 – PackMLObjects definition

Attribute Value

BrowseName PackMLObjects

References NodeClass BrowseName TypeDefinition

OrganizedBy by the Objects Folder defined in OPC 10000-5

HasTypeDefinition ObjectType FolderType

6.3 Objects and ObjectTypes

6.3.1 Overview

The PackML model when adapted to OPC UA results in a number of StateMachines (see section 6.3.5
for a definition). Instances of these StateMachines may not expose all states and transitions at all
times. The actual list of AvailableStates and AvailableTransitions are configured and each instance
would be defined by either the end user or the machine builder. The PackML model also includes other
meta data such as available mode, current mode, see section 6.3.2 for a complete list

6.3.2 PackMLBaseObjectType

The PackMLBaseObjectType defines a base type that can be used with any machine or object. This
base type provides all required information for a working PackML system.

PackMLBaseObject

Type

PackMLVersion

BaseStateMachine:

PackMLBaseStateMachineType

Mode

Remote

Command

SetProduct

SetMachSpeed

Admin

Status

SetInterlock

SetParameter

TagID

Figure 11 - PackMLBaseObjectType Overview

 Table 3 formally defines the PackMLBaseObjectType.

Table 3 – PackMLBaseObjectType Definition

Attribute Value

BrowseName PackMLBaseObjectType

IsAbstract False

Reference Node
Class

BrowseName DataType TypeDefinition Modelling
Rule

RW

Subtype of the BaseObjectType from OPC 10000-5.

HasProperty Variable TagID String PropertyType Optional R

HasProperty Variable PackMLVersion String PropertyType Optional R

HasComponent Object Admin PackMLAdminObjectType Mandatory

OPC UA for PackML 28 RC 1.01

TagID – provide an additional field in which an associated name (third party cross reference or other
string) can be stored. It can also be an additional name used to identify this PackM L System.

PackMLVersion – provides the version of the supported OMAC PackML

Admin provides administrative functionality required for the PackML OPC UA server. It is defined in
section 6.3.4. The administrative functionality exposed by this Object should be restricted to only users

with administrative rights.

Status provides the status information required for a PackML OPC UA Server. It is defined in section

6.3.3.

SetUnitMode method allows an OPC UA Client to change the mode of the machine. The available
modes are part of the supported Modes and a Client can pass any of the values listed. The Method
may return an error if the requested mode is not allowed based on either the current mode of the
machine or the state of the machine. For additional details see the definition of the SetUnitMode
Method in 6.7.2

SetMachSpeed Method allows a Client to change the machine speed.

SetProduct Method allows a Client to change the product(s) and the ProcessVariables and Ingredients.
For additional details see the definition of SetProduct Method in 6.7.4 .

SetParameter Method allows a Client to set the parameters for the machine. For additional details see
the definition of SetParameter Method in 6.7.17.

RemoteCommand Method allows a Client to send a command to the UA Server that is to be passed
to the PackML Server and or upstream or downstream Servers. Parameters sent to the Remote system
are typically used in the EXECUTE and STARTING states for a production task. With the restriction
that RemoteCommand Parameter Values are limited to REAL values. For additional details see the
definition of the RemoteCommand Method in 6.7.15

SetInterlock method allows a Client to set one of the interlocks associated with the system. For
additional details see the definition of the SetInterlock Method in 0

6.3.3 PackMLStatusObjectType

The PackMLStatusObjectType defines an ObjectType that is used to group all of the status information

that is part of the PackML information model. It is illustrated in Figure 12

HasComponent Object Status PackMLStatusObjectType Mandatory

HasComponent Object BaseStateMachine PackMLBaseStateMachine
Type

Mandatory

HasComponent Method SetUnitMode Defined in section 6.7.2 Mandatory

HasComponent Method SetMachSpeed Defined in section 6.7.3 Mandatory

HasComponent Method SetProduct Defined in section 6.7.4 Mandatory

HasComponent Method SetParameter Defined in section 6.7.17 Mandatory

HasComponent Method RemoteCommand Defined in section 6.7.15 Optional

HasComponent Method SetInterlock Defined in section 6.7.16 Optional

OPC 30050: PackML 29 RC 1.01

PackMLStatus

ObjectType

UnitModeChangeIn

Progress

StateChangeIn

Progress

EquipmentBlocked

EquipmentStarved

MaterialInterlocked

<MaterialInterlock>

:: InterlockVariableType

HasInterlock

MachSpeed

CurMachSpeed

Parameter

RemoteParameter

Product

StateRequested

UnitModeCurrent

UnitSupported

Modes

UnitMode

Requested

Figure 12 - PackMLStatusObjectType Overview

Table 4 formally defines the PackMLStatusObjectType.

Table 4 – PackMLStatusObjectType Definition

Attribute Value

BrowseName PackMLStatusObjectType

IsAbstract False

Reference Node
Class

BrowseName DataType TypeDefinition Modelling
Rule

R
W

Subtype of the BaseObjectType from OPC 10000-5.

HasComponent Variable UnitModeRequested Boolean BaseDataVariableType Optional R

HasProperty Variable UnitSupportedModes NodeId PropertyType Mandatory R

HasComponent Variable UnitModeCurrent Enumeration BaseDataVariableType Mandatory R

HasComponent Variable UnitModeChangeInProgress Boolean BaseDataVariableType Optional R

HasComponent Variable StateRequested Int32 BaseDataVariableType Optional R

HasComponent Variable StateChangeInProgress Boolean BaseDataVariableType Optional R

HasComponent Variable MachSpeed Float AnalogItemType Mandatory R

HasComponent Variable CurMachSpeed Float AnalogItemType Mandatory R

HasComponent Variable EquipmentBlocked Boolean BaseDataVariableType Mandatory R

HasComponent Variable EquipmentStarved Boolean BaseDataVariableType Mandatory R

HasComponent Variable MaterialInterlocked Boolean BaseDataVariableType Optional R

HasInterlock Variable MaterialInterlock Boolean[] BaseDataVariableType Optional R

HasComponent Variable Parameter PackMLDescripto
rDataType[]

BaseDataVariableType Optional R

HasComponent Variable RemoteParameter PackMLRemoteIn
terfaceDataType[
]

BaseDataVariableType Optional R

HasComponent Variable Product PackMLProductD
ataType[]

BaseDataVariableType Optional R

In OPC UA defined StateMachines, a mandatory Variable CurrentState provides the current state of
the StateMachine, which is the current state of the PackML device. CurrentState is defined in OPC

10000-5.

OPC UA for PackML 30 RC 1.01

UnitModeRequested - If TRUE, indicates that a unit mode change was requested, reflects the status

of the Command UnitModeRequested.

UnitSupportedModes – provides the NodeId of the enumeration DataType that describes the available
modes for this PackML instance. A Server might have more than one of these instances; each instance

might expose a different set of available modes and thus have a different enumeration.

UnitModeCurrent - is used to display the current mode of the instance of this type. The DataType is
Enumeration which is abstract, but an instance shall be assigned a concrete enumeration, which
corresponds to the enumeration listed in SupportedModes.

UnitModeChangeInProgress – a flag that indicates a unit change has been requested and is in

progress

StateRequested - This value is used for state transition checking, to ensure that transitions to a target
state can be achieved. The target state, StateRequested, is a numerical value corresponding to a state
in the base state model (shown above).

StateChangeInProgress – a flag that indicates that a state change has been requested and is in

progress. The StateMachine will report the current state.

MachSpeed - Setpoint speed of the unit.

CurMachSpeed - Current speed of the unit.

EquipmentInterlock.Blocked - If TRUE, then processing is suspended because downstream equipment

is unable to receive material (e.g. downstream buffer is full)

EquipmentInterlock.Starved - If TRUE, then processing is suspended because upstream equipment is

unable to send material.

MaterialInterlocked – a flag that indicates this machine is interlocked. It is a summary of the interlock

variable that is associated with this machine.

MaterialInterlock - this is a placeholder that indicates a machine may have one or more interlock
variables defined. The interlock Variable provides information about the actual interlock including if it

is active.

Parameter – Current parameters used in the production job. This reflects the last parameter sent via
the SetParameter Method.

RemoteParameter – the last remote parameter that were sent to the machine. This is optional variable
is provided only if sending remote parameters are supported, the RemoteCommand Method is provided
this variable shall also be provided. For additional details see the RemoteCommand Method definition

in 6.7.15.

Product – provides a list of the products supported by this machine. The array is typically needed for
machines that run multiple products. It defines the IDs of the products and process & process variables
associated with the product. The product data can come from either a local HMI or remote systems
and are used to process the product on the unit machine.

6.3.4 PackMLAdminObjectType

The PackMLAdminObjectType defines an ObjectType that is used to group all of the Admin information

that is part of the PackML information model. I t is illustrated in Figure 13.

OPC 30050: PackML 31 RC 1.01

PackMLAdmin

ObjectType

Warning

WarningExtent

StopReason

StopReasonExtent

Parameter

Alarm

AlarmExtent

AlarmHistory

AlarmHistoryExtent

ModeCurrentTime

ModeCumulativeTime

StateCurrentTime

StateCumulativeTime

ProdConsumedCount

ProdProcessedCount

ProdDefectiveCount

AccTimeSinceReset

MachDesignSpeed

Figure 13 - PackMLAdminObjectType Overview

 Table 5 formally defines the PackMLAdminObjectType.

Table 5 – PackMLAdminObjectType Definition

Attribute Value

BrowseName PackMLAdminObjectType

IsAbstract False

Reference

Node
Class

BrowseName DataType TypeDefinition ModelingR
ule

R
W

Subtype of the BaseObjectType from OPC 10000-5.

HasComponent Variable Parameter PackMLDescriptorD
ataType[]

BaseDataVariableType Optional R

HasAlarm Variable Alarm PackMLAlarmDataT
ype[]

BaseDataVariableType Optional R

HasComponent Variable AlarmExtent Int32 BaseDataVariableType Optional R

HasAlarmHistory Variable AlarmHistory PackMLAlarmDataT
ype[]

BaseDataVariableType Optional R

HasComponent Variable AlarmHistoryExtent Int32 BaseDataVariableType Optional R

HasWarning Variable Warning PackMLAlarmDataT
ype[]

BaseDataVariableType Optional R

HasComponent Variable WarningExtent Int32 BaseDataVariableType Optional R

HasStopReason Variable StopReason PackMLAlarmDataT
ype

BaseDataVariableType Optional R

HasComponent Variable StopReasonExtent Int32 BaseDataVariableType Optional R

HasComponent Variable ModeCurrentTime Int32[] BaseDataVariableType Optional R

OPC UA for PackML 32 RC 1.01

Parameter - The parameter tags associated with the local interface are typically used as parameters
that are displayed or used on the unit locally, for example from an HMI. These parameters can be used
to display any quality, alarm, or machine downtime parameter. The Parameters are typically limited to

parameters related the unit. The length of the array is the maximum number of parameters needed.

Alarm - Alarm Events (trigger, value, message, category,…). The alarm tags associated to the local
interface are typically used as parameters that are displayed or used on the unit locally, for example
from an HMI. These alarm parameters can be used to display any alarm, or machine downtime cause
that is currently occurring in the system. The alarms are typically limited to the machine unit. Each
machine can define as many alarms as are required for the machine.

AlarmExtent - Defines the maximum number of alarms available, for the machine annunciation or

reporting

AlarmHistory - These alarm history parameters can be used to display any alarm history, or mach ine
downtime cause.

AlarmHistoryExtend - associated with the maximum number of alarms needed to be archived or tagged
as alarm history for the machine.

Warning - Array of warning information Events. Warnings are general events that do not cause the
machine to stop, but may require operator action because a stoppage may be imminent. Warning
elements have the same structure as Stop Reason elements.

WarningExtent - Defines the maximum number of warning elements available.

StopReason - A structure for the stop reason Event (similar to Alarms) which define the possible stop
reasons (trigger, value, message, category). Stop Reason is typically used for “First Out Fault”
Reporting and Other Stoppage Events. The stop reason is the first event captured during a n abort,
held, suspended or stop event.

StopReasonExtent - Defines the maximum number of stop reason elements or available.

ModeCurrentTime - The current amount of time, in seconds, that the machine has been in each mode.

The array index for a mode is the Unit mode value. The values roll over to 0 at 2,147,483,647.

ModeCumulativeTime - The cumulative amount of time, in seconds, that the machine has been in each
mode. The array index for a mode is the Unit mode value. The value is the cumulative elapsed tim e
the machine has spent in each mode since its timers and counters were reset. The values roll over to
0 at 2,147,483,647.

StateCurrentTime - The current amount of time, in seconds, that the machine has been in each state
for each mode. The first array index for is the Unit mode value, the second array index is the state
value.. The values roll over to 0 at 2,147,483,647.

StateCumulativeTime - The cumulative amount of time, in seconds, that the machine has been in each
state for each mode. The first array index for is the Unit mode value, the second array index is the
state value. The value is the cumulative elapsed time the machine has spent in each mode and state
since its timers and counters were reset. The values roll over to 0 at 2,147,483,647

HasComponent Variable ModeCumulativeTime Int32[] BaseDataVariableType Optional R

HasComponent Variable StateCurrentTime Int32[][] BaseDataVariableType Optional R

HasComponent Variable StateCumulativeTime Int32[][] BaseDataVariableType Optional R

HasComponent Variable ProdConsumedCount PackMLCountDataT
ype []

BaseDataVariableType Optional R

HasComponent Variable ProdProcessedCount PackMLCountDataT
ype []

BaseDataVariableType Optional R

HasComponent Variable ProdDefectiveCount PackMLCountDataT
ype []

BaseDataVariableType Optional R

HasComponent Variable AccTimeSinceReset Int32 BaseDataVariableType Optional R

HasComponent Variable MachDesignSpeed Float BaseDataVariableType Optional R

OPC 30050: PackML 33 RC 1.01

ProdConsumedCount - Represents the material used/consumed in the production machine. An
example of tag usage would be the number of bags consumed in a filler, or bagger packaging machine,
or the amount of linear length used, or the number caps used. This tag can be used locally or remotely
if needed. The extent of the array is typically limited to the number of raw materials needed to be
counted. The array is typically used for unit machines that run multiple raw materials.

ProdProcessedCount - Represents the products processed in the production machine. An example of
tag usage would be the number of products that were made, including al l good and defective products.
The structure of the ProdProcessedCount is the same as the ProdConsumedCount. The length of the
array is typically limited to the number of products that need to be counted. The number of products
processed minus the defective count is the number of non-defective products made by the machine.
The array index of # = 0 should be reserved for the count of the number of units from the primary
production stream.

ProdDefectiveCount - Represents the products marked as defective in the production machine. The
structure of the ProdDefectiveCount is the same as the ProdConsumedCount. The length of the array
is typically limited to the number of products that need to be counted. The number of products
processed minus the defective count is the number of non-defective products made by the machine.
The array index of # = 0 should be reserved for the count of the number of units from the primary
production stream.

AccTimeSinceReset - Represents the amount of time, in seconds, since the last reset of all counters

as triggered. Counters that are reset are:

•UnitName.Admin.ModeCurrentTime[#]

•UnitName.Admin.ModeCumulativeTime[#]

•UnitName.Admin.StateCurrentTime[#,#]

•UnitName.Admin.StateCumulativeTime[#,#]

•UnitName.Admin.ProdConsumedCount[#].Count

•UnitName.Admin.ProdProcessedCount[#].Count

•UnitName.Admin.ProdDefectiveCount[#].Count

•UnitName.Admin.AccTimeSinceReset

MachDesignSpeed - Represents the maximum design speed of the machine in primary packages per
minute for the package configuration being run. This speed is NOT the maximum speed as specified
by the manufacturer, but rather the speed of the machine is designed to run in its installed environment.

6.3.5 StateMachines Overview

The Figure 14 provides an overview the StateMachines that are part of the model.

OPC UA for PackML 34 RC 1.01

FiniteStateMachine

PackMLBaseState

MachineType

PackMLMachine

StateMachineType

PackMLExecute

StateMachineType

Available

Transitions

AvailableStates

MachineState

Cleared

HasSubState
Machine

ExecuteState

Running

HasSubState
Machine

Figure 14 - PackML StateMachines Overview

A key point in PackML StateMachines is that all of the StateMachines defined in PackML shall require
that the optional AvailableTransitions and AvailableStates component of the FiniteStateMachineType
be provided on all instance of the StateMachine. This allows Clients to understand the available States
and Transitions for the given instance of the StateMachine. A StateMachine may restrict the States
and Transition that are currently available. The following figure provides an overview of the PackML
States. The Stopped State is commonly the initial sub-state that will be the starting point for the
Cleared parent state. The Running State commonly will use the Resetting State as the initial state, but
not all instance of the Running State sub-state model will include Resetting, so no initial state is
defined for the Running State. The proposed valid initial States for this model are the Idle or Resetting
States. This is Server dependant. The initial state for the system is Aborted. Alternative it could be
Cleared as parent state with the proposal of Stopped as initial sub state. Figure 15 - PackML States
provide an overview of the states and transitions in the StateMachine. The model refers to the PackML
state model Version 2015. The dashed lines for the Hold transitions are optional extension s of the
state model

OPC 30050: PackML 35 RC 1.01

Figure 15 - PackML States

6.3.6 PackMLBaseStateMachineType

The PackMLBaseStateMachineType is the top level StateMachine for PackML. It is illustrated in Figure
16. The TR-88 specification does not define an initial State for this StateMachine, but typically the
state machine uses either the Aborted or Stopped State as an initial State. Annex B provide

recommended display names for the various states.

Cleared

Running

Suspending

UnHolding

Starting Completing Complete

HoldingHeld

SuspendedUnSuspending

Idle

Resetting

ClearingStoppingStopped AbortingAbortedClear

Execute

Un-
suspend

Un-
hold

Suspend

Hold

Reset

Hold

Hold

Hold

SC

SC

SC

SC

SC

SC

Start

Reset
Stop Abort

SC

SC

SC

SC

SC

OPC UA for PackML 36 RC 1.01

FiniteStateMachine

Type

PackMLBase

StateMachineType

ClearedToAborting

AbortedToCleared

Abort

StateType

TransitionType

AvailableStates

Cleared

AbortingToAborted

Aborting

Aborted

HasCause

HasCause

MachineState:

PackMLMachineStateMachineType

HasSubstateMachine

Clear

AvailableTransitions

Figure 16 - PackMLBaseStateMachineType illustration

The PackMLBaseStateMachineType defines the available states in a PackML system. The type is
defined in Table 6. StateTypes and TransitionTypes only exist in the type system, thus they do not

have a modelling rule.

Table 6 – PackMLBaseStateMachineType Definition

Attribute Value

BrowseName PackMLBaseStateMachineType

IsAbstract False

References Node
Class

BrowseName Data
Type

TypeDefinition Modelling
Rule

Subtype of the FiniteStateMachineType defined in OPC 10000-5

HasComponent Variable 0:AvailableTransition
s

NodeId[] BaseDataVariableType Mandatory

HasComponent Variable 0:AvailableStates NodeId[] BaseDataVariableType Mandatory

HasComponent Object Aborting StateType

HasComponent Object Aborted StateType

HasComponent Object Cleared StateType

HasComponent Object MachineState PackMLMachineStateMachineType Mandatory

HasComponent Object AbortedToCleared TransitionType

HasComponent Object AbortingToAborted TransitionType

HasComponent Object ClearedToAborting TransitionType

HasComponent Method Abort Defined in 6.7.5 Optional

HasComponent Method Clear Defined in 6.7.6 Optional

OPC 30050: PackML 37 RC 1.01

The AvailableTransitions and AvailableStates are optional variables in the FiniteStateMachine, but
they are overridden in the PackMLBaseStateMachine and are made Mandatory. The
PackMLBaseStateMachine does include a sub-state machine that provides sub-states for the Cleared
State.

Aborting - The ABORTING state can be entered at any time in response to the Abort command or on
the occurrence of a machine fault. The aborting logic will bring the machine to a rapid safe stop.
Operation of the emergency stop will cause the machine to be tripped by its safety system. It will also
provide a signal to initiate the ABORT State. The value of this StateType is 8.

Aborted - This state maintains machine status information relevant to the Abort condition. The machine
can only exit the ABORTED state after an explicit Clear command, subsequently to manual intervention
to correct and reset the detected machine faults . The value of this StateType is 9.

Cleared – this state exposes the MachineState sub StateMachine and state associated with this
substate machine. The value of this StateType is 19.

MachineState – A PackMLMachineStateMachineType defined in section 6.3.7.

Abort – a Method to trigger a change of state to Aborting. This will affect all sub-states in cleared state.
Defined in 6.7.5.

Clear – a Method to trigger a change of state to the Cleared. Defined in 6.7.6.

Table 7 defines the available Transitions in the PackMLBaseStateMachineType.

Table 7 – PackMLBaseStateMachineType Additional References

Source Path Reference
Type

Is Forward Target Path

ClearedToAborting ToState True Aborting

 FromState True Cleared

 HasCause True Abort

AbortingToAborted ToState True Aborted

 FromState True Aborting

AbortedToCleared ToState True Cleared

 FromState True Aborted

 HasCause True Clear

6.3.7 PackMLMachineStateMachineType

The PackMLMachineStateMachineType defines the machine level state machine. It is illustrated in

Figure 17.

The TR-88 specification does not define an initial State for this StateMachine, but typically the state
machine uses Stopped State as an initial State. Annex B provides recommended display names for
the various states.

OPC UA for PackML 38 RC 1.01

FiniteStateMachine

Type

PackMLMachine

StateMachineType

RunningToStopping

StoppedToRunning

Stop

StateType

TransitionType

AvailableStatesAvailableTransitions

Running

ClearingToStopped

Clearing

Stopping

HasCause

HasCause

ExecuteState:

PackMLExecuteStateMachineType

HasSubstateMachine

StoppingToStopped

Stopped

Reset

Figure 17 - PackMLMachineStateMachineType illustration

Table 8 defines the PackMLMachineStateMachineType. StateTypes and TransitionTypes only exist in

the type system, thus they do not have a modelling rule.

Table 8 – PackMLMachineStateMachineType Definition

Attribute Value

BrowseName PackMLMachineStateMachineType

IsAbstract False

Reference Node
Class

BrowseName DataType TypeDefinition Modelling
Rule

Subtype of the FiniteStateMachineType from OPC 10000-5.

OPC 30050: PackML 39 RC 1.01

HasComponent Variable 0:AvailableTransitions NodeId[] BaseDataVariableType Mandatory

HasComponent Variable 0:AvailableStates NodeId[] BaseDataVariableType Mandatory

HasComponent Object Stopped StateType

HasComponent Object Stopping StateType

HasComponent Object Clearing StateType

HasComponent Object Running StateType

HasComponent Object ExecuteState PackMLExecuteStateMachineType Mandatory

HasComponent Object StoppingToStopped TransitionType

HasComponent Object ClearingToStopped TransitionType

HasComponent Object StoppedToRunning TransitionType

HasComponent Object RunningToStopping TransitionType

HasComponent Method Stop Defined in 6.7.7 Optional

HasComponent Method Reset Defined in 6.7.8 Optional

The AvailableTransitions and AvailableStates are optional variables in the FiniteStateMachine, but
they are overridden in the PackMLMachineStateMachineType and are made Mandatory. The
PackMLMachineStateMachineType does include a sub-state machine that provides sub-states for the

Run State.

Stopped - The machine is powered and stationary after completing the STOPPING state. All

communications with other systems are functioning (if applicable). The value of this StateType is 2

Stopping - This state executes the logic which brings the machine to a controlled stop as reflected by

the STOPPED state. The value of this StateType is 7.

Clearing - Initiated by a state command to clear faults that may have occurred when ABORTING, and

are present in the ABORTED state. The value of this StateType is 1.

Running – the State that allows the ExecuteState machine to become active, enabling sub-states
provided by this StateMachine. The value of this StateType is 18.

ExecuteState – StateMachine that provides additional sub states.

Stop – A Method to trigger a change of state to Stopping. This will affect all sub-states in Run state.

Defined in 6.7.7

Reset – A Method to trigger a change of state to Running, enabling all of the sub-states of Running
and the respective Methods that they expose. Defined in 6.7.8

The transitions are defined in Table 9.

Table 9 – PackMLMachineStateMachineType Additional References

Source Path Reference
Type

Is Forward Target Path

StoppedToRunning FromState True Stopped

 ToState True Running

 HasCause True Reset

StoppingToStopped FromState True Stopping

 ToState True Stopped

ClearingToStopped FromState True Clearing

 ToState True Stopped

RunningToStopping FromState True Running

 ToState True Stopping

 HasCause True Stop

OPC UA for PackML 40 RC 1.01

6.3.8 PackMLExecuteStateMachineType

The PackMLExecuteStateMachineType provides all of the base states defined in PackML. It is
illustrated in Figure 18. The TR-88 specification does not define an initial State for this StateMachine,
but typically the state machine use either the Idle or Resetting State as an initial State. Annex B

provide recommended display names for the various states.

FiniteStateMachine

Type

PackMLExecute

StateMachineType

IdleToStarting

HeldToUnHolding

Reset

StateType

TransitionType

AvailableStatesAvailableTransitions

Resetting

StartingToExecute

Idle

Starting

HasCause

HasCause

UnHoldingToExecute

UnSuspending

Suspended

Suspending

Execute

Holding

Held

UnHolding

Completing

Complete

UnSuspendingToExecute

SuspendingToSuspended

ExecuteToSuspending HasCause

CompleteToResetting

ExecuteToHolding

HasCause

HasCause

SuspendedToUnsuspending HasCause

ResettingToIdle

CompletingToComplete

HoldingToHeld

ExecuteToCompleting

Hold

Unsuspend

Start

Unhold

Suspend

SuspendingToHolding

StartingToHolding

UnSuspendingToHolding

UnholdingToHolding

UnSuspendingToHolding

HasCause

HasCause

ExecuteToCompleting HasCause

ToComplete

Figure 18 – PackMLExecuteStateMachineType illustration

OPC 30050: PackML 41 RC 1.01

The PackMLExecuteStateMachineType is defined in Table 10. StateTypes and TransitionTypes only

exist in the type system, thus they do not have a modelling rule.

Table 10 – PackMLExecuteStateMachineType Definition
Attribute Value

BrowseName PackMLExecuteStateMachineType

IsAbstract False

References NodeCl
ass

BrowseName DataType TypeDefinition Modelling
Rule

Subtype of the FiniteStateMachineType defined in OPC 10000-5

HasComponent Variable 0: AvailableTransitions NodeId[] BaseDataVariableType Mandatory

HasComponent Variable 0: AvailableStates NodeId[] BaseDataVariableType Mandatory

HasComponent Object Resetting StateType

HasComponent Object Idle StateType

HasComponent Object Starting StateType

HasComponent Object Suspending StateType

HasComponent Object Suspended StateType

HasComponent Object Unsuspending StateType

HasComponent Object Holding StateType

HasComponent Object Held StateType

HasComponent Object Unholding StateType

HasComponent Object Execute StateType

HasComponent Object Completing StateType

HasComponent Object Complete StateType

HasComponent Object ResettingToIdle TransitionType

HasComponent Object IdleToStarting TransitionType

HasComponent Object StartingToExecute TransitionType

HasComponent Object ExecuteToSuspending TransitionType

HasComponent Object SuspendingToSuspended TransitionType

HasComponent Object SuspendedToUnsuspending TransitionType

HasComponent Object UnsuspendingToExecute TransitionType

HasComponent Object ExecuteToHolding TransitionType

HasComponent Object HoldingToHeld TransitionType

HasComponent Object HeldToUnholding TransitionType

HasComponent Object UnholdingToExecute TransitionType

HasComponent Object ExecuteToCompleting TransitionType

HasComponent Object CompletingToComplete TransitionType

HasComponent Object CompleteToResetting TransitionType

HasComponent Object StartingToHolding TransitionType

HasComponent Object UnsuspendingToHolding TransitionType

HasComponent Object SuspendedToHolding TransitionType

HasComponent Object SuspendingToHolding TransitionType

HasComponent Object UnholdingToHolding TransitionType

HasComponent Method Reset Defined in Clause 6.7.8 Optional

HasComponent Method ToComplete Defined in Clause 6.7.9 Optional

HasComponent Method Start Defined in Clause 6.7.10 Optional

HasComponent Method Unhold Defined in Clause 6.7.11 Optional

HasComponent Method Suspend Defined in Clause 6.7.12 Optional

HasComponent Method Hold Defined in Clause 6.7.14 Optional

HasComponent Method Unsuspend Defined in Clause 6.7.13 Optional

*Not all transitions defined in ANSI/ISA - TR88.00.02 - 2015. Following additional transitions in the object prepared for potential future
extensions in TR88: StartingToHolding, UnsuspendingToHolding, SuspendedToHolding, SuspendingToHolding, UnholdingToHolding.

This FiniteStateMachine supports multiple Active states. It also supports 19 Transitions and a Method

for transition between states.

Resetting: In response to a Reset command, the unit/machine will transition to Resetting from either
Stopped or Complete. In this state the unit/machine attempts to clear any standing errors or stop
causes. If successful, the unit/machine transitions to Idle. No hazardous motion should happen in this
state. The value of this StateType is 15

OPC UA for PackML 42 RC 1.01

Idle: The unit/machine is in an error-free state, waiting to start. The unit/machine transitions
automatically to Idle after all steps necessary for Resetting have been completed. All conditions
achieved during Resetting are maintained. A Start command will transition the unit/machine from Idle
to Starting. The value of this StateType is 4.

Starting: The unit/machine completes all steps necessary to begin execution of the active machine
mode. A Start command will cause the unit/machine to transition from Idle to Starting. The
unit/machine will transition automatically from Starting to Execute once all required steps have been
completed. The value of this StateType is 3.

Suspending: The unit/machine will transition from Execute to Suspending if conditions external to the
unit/machine require a pause in production. Such conditions include faults to upstream or downstream
equipment. The decision to Suspend may be made be a supervisory system monitoring the production
line conditions or by unit/machine sensors detecting downstream blockages or upstream product
scarcity. (In the former case, the unit/machine is 'blocked”; in the latter case, the unit/machine is
“starved”) After all steps required to suspend the machine have been completed, the unit/machine will
automatically transition to Suspended state. The value of this StateType is 13.

Suspended: The unit/machine is paused, waiting for external process conditions to clear. In this state,
the unit/machine shall not produce product, but may, if required, dry-cycle. Once external conditions
have returned to normal, the unit/machine will transition to Unsuspending, typically without operator
intervention. The value of this StateType is 5.

Unsuspending: After all external process conditions that caused the unit/machine to suspend have
cleared, the unit/machine completes all steps required to resume execution of the active machine
mode. Once all required actions to unsuspend the unit/machine have been completed, the
unit/machine will automatically transition to Execute state. The value of this StateType is 14.

Holding: The unit/machine will transition from Execute to Holding if conditions internal to the
unit/machine require a pause in production. Such conditions would include low levels on materials
required for production or other minor issues requiring operator service, for example. The decision to
hold may be made automatically by the unit/machine itself or by an operator. After all steps required
to hold the machine have been completed, the unit/machine will transition au tomatically to Held state.
The value of this StateType is 10.

Held: The unit/machine is paused, waiting for internal process conditions to clear. In this state, the
unit/machine shall not produce product, though it may, if required, dry-cycle. A transition to Unholding
will occur once internal machine conditions have cleared or if the Unhold command is initiated by an
operator. The value of this StateType is 11.

Unholding: After all internal process conditions that caused the unit/machine to hold have clear ed, the
unit/machine completes all steps required to resume execution of the active machine mode. Once all
required actions to unhold the machine have been completed, the unit/machine will transition
automatically to Execute state. The value of this StateType is 12.

Execute: If the unit/machine is actively carrying out the behaviour or activity defined by the selected
mode, then the machine is in Execute state. If the unit/machine is in production mode, for example,
this means that the machine is producing product. The value of this StateType is 6.

Completing: Once the process associated with the current mode has reached a defined threshold (e.g.
the required number of products for the current job have been produced), the unit/machine transitions
from Execute to Completing. In this state all steps necessary to shut down the current process are
carried out. The machine then transitions automatically to Complete state. The value of this StateType

is 16.

Complete: Complete indicates the process associated with the active mode has come to its defined
end. The unit/machine will wait in this state until a Reset command is issued (in which case it will
transition to Resetting), or until the unit/machine is Stopped or Aborted. The value of this StateType
is 17.

The Transitions are described in Table 11. This FiniteStateMachine also supports six Methods, for
transitioning between states. This StateMachine includes transition to Holding from Unholding,

OPC 30050: PackML 43 RC 1.01

Starting, Unsuspending, Suspended, Suspending, all of which are extension to the ISA-TR88.00.02-

2015 specification.

Table 11 – PackMLExecuteStateMachineType Additional References

Source Path Reference
Type

Is Forward Target Path

ResettingToIdle FromState True Resetting

 ToState True Idle

IdleToStarting FromState True Idle

 ToState True Starting

 HasCause True Start

StartingToExecute FromState True Starting

 ToState True Execute

ExecuteToSuspending FromState True Execute

 ToState True Suspending

 HasCause True Suspend

SuspendingToSuspended FromState True Suspending

 ToState True Suspended

SuspendedToUnsuspending FromState True Suspended

 ToState True Unsuspending

 HasCause True Unsuspend

UnsuspendingToExecute FromState True Unsuspending

 ToState True Execute

ExecuteToHolding FromState True Execute

 ToState True Holding

 HasCause True Hold

StartingToHolding FromState True Starting

 ToState True Holding

 HasCause True Hold

SuspendingToHolding FromState True Suspending

 ToState True Holding

 HasCause True Hold

SuspendedToHolding FromState True Suspended

 ToState True Holding

 HasCause True Hold

UnsuspendingToHolding FromState True Unsuspending

 ToState True Holding

 HasCause True Hold

UnholdingToHolding FromState True Unholding

 ToState True Holding

 HasCause True Hold

HoldingToHeld FromState True Holding

 ToState True Held

HeldToUnholding FromState True Held

 ToState True Unholding

 HasCause True Unhold

UnholdingToExecute FromState True Unholding

 ToState True Execute

ExecuteToCompleting FromState True Execute

 ToState True Completing

 HasCause True ToComplete

CompletingToComplete FromState True Completing

 ToState True Complete

CompleteToResetting FromState True Complete

 ToState True Resetting

 HasCause True Reset

*Not all transitions defined in ANSI/ISA - TR88.00.02 - 2015. Following additional transitions in the object prepared for potential future
extensions in TR88: StartingToHolding, UnsuspendingToHolding, SuspendedToHolding, SuspendingToHolding, UnholdingToHolding.

6.4 Variables and VariableTypes

-

OPC UA for PackML 44 RC 1.01

6.5 DataTypes

6.5.1 Overview

This section defines any enumeration or structure that are defined as part of the PackML specification.

6.5.2 ProductionMaintenanceModeEnum

The ProductionMaintenanceModeEnum describes the predefined modes. This is a default mode
enumeration. A Server may define additional enumeration that describe the modes they support, but
any such enumeration must include “Produce” as enumeration 1 and if Maintenance or Manual are
include, they must be 2 and 3 respectively. Any additional mode must start at 4 or greater. If vendor
specific or end user specific mode enumerations are included, they shall be defined as a subtype of
enumeration. The ProductionMaintenanceModeEnum is the default enumeration that shall be used if
no vendor or end user mode enumeration is defined. The ProductionMaintenanceModeEnum is defined

in Table 12.

Table 12 – ProductionMaintenanceModeEnum values

Value Description

Invalid_0 This is an invalid mode

Produce_1 Machine is in production mode

Maintenance_2 Machine is in maintenance mode

Manual_3 Machine is in manual mode

where the following definition apply:

 Produce corresponds to the PackML Production Mode which is routine production.

 Maintenance corresponds to the PackML Maintenance Mode which is the ability to run a
machine independent of other machine in a production line.

 Manual corresponds to the PackML Manual Mode which provides direct control of the individual
machine elements.

6.5.3 PackMLCountDataType

The PackMLCountDataType is used to generate summary information about the system. The
information depending on the use might be related to produced product, defective materials or any
other information that needs to be tracked. It is formally defined in Table 13

Table 13 – PackMLCountDataType Structure

Name Type Description

PackMLCountDataType Structure

 ID Int32 A user defined value that represents the consumed (processed or
defective) material. Typically, this is an SKU number or a user
material master number.

 Name String The name is used to literally describe the material ID, and its
associated material.

 Unit EUInformation The unit tag is used to describe the names associated with a specific
material used by the machine.

 Count Int32 The amount of consumed (processed or defective) material on the
current production job.

 AccCount Int32 The cumulative count value of the material produced (or consumed).
This counter gives the user a non-resetting counter that may be used
for OEE calculations

6.5.4 PackMLDescriptorDataType

The PackMLDescriptorDataType provides the PackML Parameter structure. The
PackMLDescriptorDataType is formally defined in Table 14

OPC 30050: PackML 45 RC 1.01

Table 14 – PackMLDescriptorDataType Structure

Name Type Description

PackMLDescriptorDataType Structure

 ID Int32 A unique number assigned to the parameter.

 Name String The name of the parameter

 Unit EUInformation OPC UA engineering unit information

 Value Float This is the numeric value of the parameter

 .

6.5.5 PackMLIngredientsDataType

The PackMLIngredientsDataType provides the PackML Parameter structure. The
PackMLIngredientsDataType is formally defined in Table 15.

Table 15 – PackMLIngredientsDataType Structure

Name Type Description

PackMLIngredientsDataType Structure

 IngredientID Int32 A unique number assigned to the ingredient.

 Parameter PackMLDescriptor
DataType[]

The array of Parameter that correspond to the ingredient

6.5.6 PackMLProductDataType

The PackMLProductDataType provides the PackML product information. The
PackMLProductDataType is formally defined in Table 16.

Table 16 – PackMLProductDataType Structure

Name Type Description

PackMLProductDataType Structure

 ProductID Int32 A unique number assigned to the product.

 ProcessVariables PackMLDescriptorDataType[] The array of Process variables associated with this
product

 Ingredients PackMLIngredientsDataType[] The array of ingredients associated with this product.

6.5.7 PackMLRemoteInterfaceDataType

The PackMLRemoteInterfaceDataType provides the PackML remote connection information. The
PackMLRemoteInterfaceDataType is formally defined in Table 17.

OPC UA for PackML 46 RC 1.01

Table 17 – PackMLRemoteInterfaceDataType Structure

Name Type Description

PackMLRemoteInterfaceDa
taType

Structure This datatype is used with the RemoteCommand
Method defined in 6.7.15..

 Number Int32 This is the unique number for the
downstream/upstream unit machine using a
common tag structure as the unit machine. The
number should correspond to a number on the
communication network, such as network ID, or IP
address identifier. This number corresponds to
the “information sender” that is setting the
command data in the RemoteInterface[#] structure
of the unit machine.

 ControlCmdNumber Int32 A user defined command number associated with
coded value from a remote unit. This number is a
coded value sent from one node on the network to
another. The value can be associated with a unit
mode change request, speed change request, a
state change request, etc.

 CmdValue Int32
This is the command value associated with the
ControlCmdNumber above. The command
value may be the speed requested, state
change, etc.

Example:For an upstream machine designated
as #2 a control command number of 5 may be
related to the speed setting value for the
machine. A value of 400 can be used to modify
the remote machine setpoint.

Command.RemoteInterface[1].Number = 2

Command.RemoteInterface[1].ControlCmdNu
mber = 5

Command.RemoteInterface[1].CmdValue = 400

 Parameter PackMLDescriptorDataType[] The parameter tags associated to commanded
remote interface are typically used for command
parameters that are given to the unit machine from
remote machines. The parameters are typically
needed for coordinating the unit machine or
production with other machines. The parameter
value may be anything from machine limit
parameters to temperatures and counter presets.
The parameters are typically limited to machine
parameters as product and process parameters
are described in later tags.

6.6 ReferenceTypes

6.6.1 HasInterlock

This reference type is used to point to a HasInterlock. It is defined in Table 18

Table 18 – HasInterlock reference type

Attributes Value

BrowseName HasInterlock

InverseName InterlockFor

Symmetric False

IsAbstract False

References NodeClass BrowseName Comment

Subtype of HasComponent defined in OPC 10000-5

6.6.2 HasAlarm

This reference type is used to point to a HasAlarm. It is defined in Table 19.

OPC 30050: PackML 47 RC 1.01

Table 19 – HasAlarm reference type

Attributes Value

BrowseName HasAlarm

InverseName AlarmFor

Symmetric False

IsAbstract False

References NodeClass BrowseName Comment

Subtype of HasComponent defined in OPC 10000-5

6.6.3 HasAlarmHistory

This reference type is used to point to a HasAlarmHistory. It is defined in Table 20

Table 20 – HasAlarmHistory reference type

Attributes Value

BrowseName HasAlarmHistory

InverseName AlarmHistoryFor

Symmetric False

IsAbstract False

References NodeClass BrowseName Comment

Subtype of HasComponent defined in OPC 10000-5

6.6.4 HasWarning

This reference type is used to point to a HasWarning. It is defined in Table 19.

Table 21 – HasWarning reference type

Attributes Value

BrowseName HasWarning

InverseName WarningFor

Symmetric False

IsAbstract False

References NodeClass BrowseName Comment

Subtype of HasComponent defined in OPC 10000-5

6.6.5 HasStopReason

This reference type is used to point to a HasStopReason. It is defined in Table 19.

Table 22 – HasStopReason reference type

Attributes Value

BrowseName HasStopReason

InverseName StopReasonFor

Symmetric False

IsAbstract False

References NodeClass BrowseName Comment

Subtype of HasComponent defined in OPC 10000-5

6.7 Methods

6.7.1 Overview

This section provides definition of the method used in this specification. These methods are referenced
from more than one location or are part of more than one object in some cases. The functionality for
the method is the same for all objects

OPC UA for PackML 48 RC 1.01

6.7.2 SetUnitMode Method

This Method allows an OPC UA Client to change the mode of the unit. Parameters are defined in Table
23

Signature

SetUnitMode(

 [in] Int32 RequestedMode

);

Table 23 - SetUnitMode Method Parameters
Argument Description

RequestedMode The requested mode from the list of available modes in the enumeration from NodeID
“UnitSupportedModes” in PackMLStatusObjectType

Method result codes are defined in Table 24

Table 24 - SetUnitMode Method Result Codes
Result Code Description

Bad_MethodInvalid See OPC 10000-4 – Services for the description of this result code. (The
Method id does not refer to a Method for the specified Object.)

Bad_NotImplemented See OPC 10000-4 – Services for the description of this result code.
(Requested operation is not implemented.)

Bad_NodeIdUnknown See OPC 10000-4 – Services for the description of this result code. (Used to
indicate that the specified Object is not valid)

Bad_InvalidState See OPC 10000-4 – Services for the description of this result code. (The
operation cannot be completed because the Object is closed, uninitialized or
in some other invalid state.)

Bad_ArgumentsMissing See OPC 10000-4 – Services for the description of this result code (The Client
did not specify all of the input arguments for the Method.)

Bad_TooManyArguments See OPC 10000-4 – Services for the description of this result code (The Client
specified more input arguments than defined for the Method.)

Bad_InvalidArgument See OPC 10000-4 – Services for the description of this result code. (Used to
indicate in the operation level results that one or more of the input arguments
are invalid. The inputArgumentResults contain the specific status code for
each invalid argument.)

Bad_TypeMismatch See OPC 10000-4 – Services for the description of this result code. (Used to
indicate that an input argument does not have the correct data type.)

Table 25 specifies the AddressSpace representation for the SetUnitMode Method. SetUnitMode
includes an InputArgument, where the input argument details are provided in Table 23.

Table 25 - SetUnitMode Method AddressSpace Definition
Attribute Value

BrowseName SetUnitMode

References NodeClass BrowseName DataType TypeDefinition ModellingRule

HasProperty Variable InputArguments Argument[] PropertyType Mandatory

6.7.3 SetMachSpeed Method

This Method allows an OPC UA Client to change the speed of the machine or unit. Parameters are
defined in Table 26

Signature

SetMachSpeed(

 [in] Float RequestedMachineSpeed

);

Table 26 - SetMachSpeed Method Parameters

Argument Description

RequestedMachine
Speed

The target machine speed

OPC 30050: PackML 49 RC 1.01

Method result codes are defined in Table 27

Table 27 - SetMachSpeed Method ResultCodes
Result Code Description

Bad_MethodInvalid See OPC 10000-4 – Services for the description of this result code. (The
Method id does not refer to a Method for the specified Object.)

Bad_NotImplemented See OPC 10000-4 – Services for the description of this result code.
(Requested operation is not implemented.)

 Bad_NodeIdUnknown See OPC 10000-4 – Services for the description of this result code. (Used to
indicate that the specified Object is not valid)

Bad_InvalidState See OPC 10000-4 – Services for the description of this result code. (The
operation cannot be completed because the Object is closed, uninitialized or
in some other invalid state.)

Bad_ArgumentsMissing See OPC 10000-4 – Services for the description of this result code (The Client
did not specify all of the input arguments for the Method.)

Bad_TooManyArguments See OPC 10000-4 – Services for the description of this result code (The Client
specified more input arguments than defined for the Method.)

Bad_InvalidArgument See OPC 10000-4 – Services for the description of this result code. (Used to
indicate in the operation level results that one or more of the input arguments
are invalid. The inputArgumentResults contain the specific status code for
each invalid argument.)

Bad_TypeMismatch See OPC 10000-4 – Services for the description of this result code. (Used to
indicate that an input argument does not have the correct data type.)

Table 28 specifies the AddressSpace representation for the SetMachSpeed Method. SetMachSpeed
includes an array of InputArguments, where the input argument details are provided in Table 26.

Table 28 – SetMachSpeed Method AddressSpace Definition

Attribute Value

BrowseName SetMachSpeed

References NodeClass BrowseName DataType TypeDefinition ModellingRule

HasProperty Variable InputArguments Argument[] PropertyType Mandatory

6.7.4 SetProduct Method

This Method allows an OPC UA Client to change product associated with this PackML system.
Parameters are defined in Table 29.

Signature

SetProduct(

 [in] PackMLProductDataType[] Product

);

Table 29 - SetProduct Method Parameters

Argument Description

Product This structure is an array of product definition, which includes the
ProductId, ProcessVariables array and Ingredients array. See
6.5.6 for a definition of the DataType.

Method result codes are defined in Table 30

Table 30 - SetProduct Method Result Codes
Result Code Description

Bad_MethodInvalid See OPC 10000-4 – Services for the description of this result code. (The
Method id does not refer to a Method for the specified Object.)

Bad_NotImplemented See OPC 10000-4 – Services for the description of this result code.
(Requested operation is not implemented.)

Bad_NodeIdUnknown See OPC 10000-4 – Services for the description of this result code. (Used to
indicate that the specified Object is not valid)

OPC UA for PackML 50 RC 1.01

Bad_InvalidState See OPC 10000-4 – Services for the description of this result code. (The
operation cannot be completed because the Object is closed, uninitialized or
in some other invalid state.)

Bad_ArgumentsMissing See OPC 10000-4 – Services for the description of this result code (The Client
did not specify all of the input arguments for the Method.)

Bad_TooManyArguments See OPC 10000-4 – Services for the description of this result code (The Client
specified more input arguments than defined for the Method.)

Bad_InvalidArgument See OPC 10000-4 – Services for the description of this result code. (Used to
indicate in the operation level results that one or more of the input arguments
are invalid. The inputArgumentResults contain the specific status code for
each invalid argument.)

Bad_TypeMismatch See OPC 10000-4 – Services for the description of this result code. (Used to
indicate that an input argument does not have the correct data type.)

Table 31 specifies the AddressSpace representation for the SetProduct Method. SetProduct includes
an array of InputArguments, where the input argument details are provided in Table 29.

Table 31 – SetProduct Method AddressSpace Definition

Attribute Value

BrowseName SetProduct

References NodeClass BrowseName DataType TypeDefinition ModellingRule

HasProperty Variable InputArguments Argument[] PropertyType Mandatory

6.7.5 Abort Method

This Method is used as part of the PackMLBaseStateMachineType. It allows an OPC UA Client to
change the state of this state machine to the Aborting state.

Signature

Abort(

);

Method result codes are defined in Table 32.

Table 32 - Abort Method result codes
Result Code Description

Bad_MethodInvalid See OPC 10000-4 – Services for the description of this result code. (The
Method id does not refer to a Method for the specified Object.)

Bad_NotImplemented See OPC 10000-4 – Services for the description of this result code.
(Requested operation is not implemented.)

 Bad_NodeIdUnknown See OPC 10000-4 – Services for the description of this result code. (Used to
indicate that the specified Object is not valid)

Bad_InvalidState See OPC 10000-4 – Services for the description of this result code. (The
operation cannot be completed because the Object is closed, uninitialized or
in some other invalid state.)

Table 33 specifies the AddressSpace representation for the Abort Method. Abort has no input or output

parameters and has no referenced objects or variab les.

Table 33 – Abort Method AddressSpace Definition

Attribute Value

BrowseName Abort

References NodeClass BrowseName DataType TypeDefinition ModellingRule

6.7.6 Clear Method

This Method is used as part of the PackMLBaseStateMachineType. It allows an OPC UA Client to
change the state of this state machine to the Cleared state.

Signature

OPC 30050: PackML 51 RC 1.01

Clear(

);

Method result codes are defined in Table 34.

Table 34 - Clear method result codes

Result Code Description
Bad_MethodInvalid See OPC 10000-4 – Services for the description of this result code. (The

Method id does not refer to a Method for the specified Object.)
Bad_NotImplemented See OPC 10000-4 – Services for the description of this result code.

(Requested operation is not implemented.)
Bad_NodeIdUnknown See OPC 10000-4 – Services for the description of this result code. (Used to

indicate that the specified Object is not valid)
Bad_InvalidState See OPC 10000-4 – Services for the description of this result code. (The

operation cannot be completed because the Object is closed, uninitialized or
in some other invalid state.)

Table 35 specifies the AddressSpace representation for the Clear Method. Clear has no input or output
parameters and has no referenced objects or variables.

Table 35 – Clear Method AddressSpace Definition

Attribute Value

BrowseName Clear

References NodeClass BrowseName DataType TypeDefinition ModellingRule

6.7.7 Stop Method

This Method is used as part of the PackMLMachineStateMachineType. It allows an OPC UA Client to
change the state of this state machine to the Stopping state.

Signature

Stop(

);

Method result codes are defined in Table 36

Table 36 - Stop Method result codes
Result Code Description

Bad_MethodInvalid See OPC 10000-4 – Services for the description of this result code. (The
Method id does not refer to a Method for the specified Object.)

Bad_NotImplemented See OPC 10000-4 – Services for the description of this result code.
(Requested operation is not implemented.)

Bad_NodeIdUnknown See OPC 10000-4 – Services for the description of this result code. (Used to
indicate that the specified Object is not valid)

Bad_InvalidState See OPC 10000-4 – Services for the description of this result code. (The
operation cannot be completed because the Object is closed, uninitialized or
in some other invalid state.)

Table 37 specifies the AddressSpace representation for the Stop Method. Stop has no input or output

parameters and has no referenced objects or variables.

Table 37 – Stop Method AddressSpace Definition

Attribute Value

BrowseName Stop

References NodeClass BrowseName DataType TypeDefinition ModellingRule

OPC UA for PackML 52 RC 1.01

6.7.8 Reset Method

This Method is used as part of the PackMLExecuteStateMachineType. It allows an OPC UA Client to
change the state of this state machine to the Resetting state.

Signature

Reset(

);

Method result codes are defined in Table 38.

Table 38 - Reset Method result codes
Result Code Description

Bad_MethodInvalid See OPC 10000-4 – Services for the description of this result code. (The
Method id does not refer to a Method for the specified Object.)

Bad_NotImplemented See OPC 10000-4 – Services for the description of this result code.
(Requested operation is not implemented.)

Bad_NodeIdUnknown See OPC 10000-4 – Services for the description of this result code. (Used to
indicate that the specified Object is not valid)

Bad_InvalidState See OPC 10000-4 – Services for the description of this result code. (The
operation cannot be completed because the Object is closed, uninitialized or
in some other invalid state.)

Table 39 specifies the AddressSpace representation for the Reset Method. Reset has no input or
output parameters and has no referenced Objects or Variables.

Table 39 – Reset Method AddressSpace Definition

Attribute Value

BrowseName Reset

References NodeClass BrowseName DataType TypeDefinition ModellingRule

6.7.9 ToComplete Method

This Method is used as part of the PackMLExecuteStateMachineType. It allows an OPC UA Client to
change the state of this state machine to the Resetting state.

Signature

ToComplete(

);

Method result codes are defined in Table 40.

Table 40 - ToComplete Method result codes
Result Code Description

Bad_MethodInvalid See OPC 10000-4 – Services for the description of this result code. (The
Method id does not refer to a Method for the specified Object.)

Bad_NotImplemented See OPC 10000-4 – Services for the description of this result code.
(Requested operation is not implemented.)

Bad_NodeIdUnknown See OPC 10000-4 – Services for the description of this result code. (Used to
indicate that the specified Object is not valid)

Bad_InvalidState See OPC 10000-4 – Services for the description of this result code. (The
operation cannot be completed because the Object is closed, uninitialized or
in some other invalid state.)

Table 41 specifies the AddressSpace representation for the ToComplete Method. Complete has no
input or output parameters and has no referenced objects or variables.

OPC 30050: PackML 53 RC 1.01

Table 41 – ToComplete Method AddressSpace Definition

Attribute Value

BrowseName ToComplete

References NodeClass BrowseName DataType TypeDefinition ModellingRule

6.7.10 Start Method

This Method is used as part of the PackMLExecuteStateMachineType. It allows an OPC UA Client to
change the state of this state machine to the Starting State and send parameters at the same time.
Which is an extension to the ISA-TR88.00.02-2015 specification. The parameter is defined in Table
42

Signature

Start(

 [in] PackMLDescriptorDataType[] Parameter

);

Table 42 - Start Method Parameters
Argument Description

Parameter The array of parameter with Id, Name, Unit and Value can be used by the method.
See 6.5.4 for the definition of the DataType.

Method result codes are defined in Table 43.

Table 43 - Start Method result codes
Result Code Description

Bad_MethodInvalid See OPC 10000-4 – Services for the description of this result code. (The
Method id does not refer to a Method for the specified Object.)

Bad_NotImplemented See OPC 10000-4 – Services for the description of this result code.
(Requested operation is not implemented.)

Bad_NodeIdUnknown See OPC 10000-4 – Services for the description of this result code. (Used to
indicate that the specified Object is not valid)

Bad_InvalidState See OPC 10000-4 – Services for the description of this result code. (The
operation cannot be completed because the Object is closed, uninitialized or
in some other invalid state.)

Bad_ArgumentsMissing See OPC 10000-4 – Services for the description of this result code (The Client
did not specify all of the input arguments for the Method.)

Bad_TooManyArguments See OPC 10000-4 – Services for the description of this result code (The Client
specified more input arguments than defined for the Method.)

Bad_InvalidArgument See OPC 10000-4 – Services for the description of this result code. (Used to
indicate in the operation level results that one or more of the input arguments
are invalid. The inputArgumentResults contain the specific status code for
each invalid argument.)

Bad_TypeMismatch See OPC 10000-4 – Services for the description of this result code. (Used to
indicate that an input argument does not have the correct data type.)

Table 44 specifies the AddressSpace representation for the Start Method. Start includes an array of
InputArguments, where the input argument details are provided in Table 42.

Table 44 – Start Method AddressSpace Definition

Attribute Value

BrowseName Start

References NodeClass BrowseName DataType TypeDefinition ModellingRule

HasProperty Variable InputArguments Argument[] PropertyType Mandatory

6.7.11 Unhold Method

This Method is used as part of the PackMLExecuteStateMachineType. It allows an OPC UA Client to
change the state of this state machine to the Unholding state.

OPC UA for PackML 54 RC 1.01

Signature

Unhold(

);

Method result codes are defined in Table 45

Table 45 - Unhold Method result codes

Result Code Description
Bad_MethodInvalid See OPC 10000-4 – Services for the description of this result code. (The

Method id does not refer to a Method for the specified Object.)
Bad_NotImplemented See OPC 10000-4 – Services for the description of this result code.

(Requested operation is not implemented.)
Bad_NodeIdUnknown See OPC 10000-4 – Services for the description of this result code. (Used to

indicate that the specified Object is not valid)
Bad_InvalidState See OPC 10000-4 – Services for the description of this result code. (The

operation cannot be completed because the Object is closed, uninitialized or
in some other invalid state.)

Table 46 specifies the AddressSpace representation for the Unhold Method. Unhold has no input or
output parameters and has no referenced objects or variables.

Table 46 – Unhold Method AddressSpace Definition

Attribute Value

BrowseName Unhold

References NodeClass BrowseName DataType TypeDefinition ModellingRule

6.7.12 Suspend Method

This Method is used as part of the PackMLExecuteStateMachineType. It allows an OPC UA Client to
change the state of this state machine to the Suspending state.

Signature

Suspend(

);

Method result codes are defined in Table 47

Table 47 - Suspend Method result codes

Result Code Description
Bad_MethodInvalid See OPC 10000-4 – Services for the description of this result code. (The

Method id does not refer to a Method for the specified Object.)
Bad_NotImplemented See OPC 10000-4 – Services for the description of this result code.

(Requested operation is not implemented.)
Bad_NodeIdUnknown See OPC 10000-4 – Services for the description of this result code. (Used to

indicate that the specified Object is not valid)
Bad_InvalidState See OPC 10000-4 – Services for the description of this result code. (The

operation cannot be completed because the Object is closed, uninitialized or
in some other invalid state.)

Table 48 specifies the AddressSpace representation for the Suspend Method. Suspend has no input
or output parameters and has no referenced objects or variables.

Table 48 – Suspend Method AddressSpace Definition

Attribute Value

BrowseName Suspend

References NodeClass BrowseName DataType TypeDefinition ModellingRule

OPC 30050: PackML 55 RC 1.01

6.7.13 Unsuspend Method

This Method is used as part of the PackMLExecuteStateMachineType. It allows an OPC UA Client to
change the state of this state machine to the Unsuspending state.

Signature

Unsuspend(

);

Method result codes are defined in Table 49

Table 49 - Unsuspend Method result codes
Result Code Description

Bad_MethodInvalid See OPC 10000-4 – Services for the description of this result code. (The
Method id does not refer to a Method for the specified Object.)

Bad_NotImplemented See OPC 10000-4 – Services for the description of this result code.
(Requested operation is not implemented.)

Bad_NodeIdUnknown See OPC 10000-4 – Services for the description of this result code. (Used to
indicate that the specified Object is not valid)

Bad_InvalidState See OPC 10000-4 – Services for the description of this result code. (The
operation cannot be completed because the Object is closed, uninitialized or
in some other invalid state.)

Table 50 specifies the AddressSpace representation for the Unsuspend Method. Unsuspend has no
input or output parameters and has no referenced Objects or Variables.

Table 50 – Unsuspend Method AddressSpace Definition

Attribute Value

BrowseName Unsuspend

References NodeClass BrowseName DataType TypeDefinition ModellingRule

6.7.14 Hold Method

This Method is used as part of the PackMLExecuteStateMachineType. It allows an OPC UA Client to
change the state of this state machine to the Holding state.

Signature

Hold(
);

Method result codes are defined in Table 51

Table 51 - Hold Method result codes
Result Code Description

Bad_MethodInvalid See OPC 10000-4 – Services for the description of this result code. (The
Method id does not refer to a Method for the specified Object.)

Bad_NotImplemented See OPC 10000-4 – Services for the description of this result code.
(Requested operation is not implemented.)

Bad_NodeIdUnknown See OPC 10000-4 – Services for the description of this result code. (Used to
indicate that the specified Object is not valid)

Bad_InvalidState See OPC 10000-4 – Services for the description of this result code. (The
operation cannot be completed because the Object is closed, uninitialized or
in some other invalid state.)

Bad_MethodInvalid See OPC 10000-4 – Services for the description of this result code. (The
Method id does not refer to a Method for the specified Object.)

Table 52 specifies the AddressSpace representation for the Hold Method. Hold has no input or output
parameters and has no referenced objects or variables.

OPC UA for PackML 56 RC 1.01

Table 52 – Hold Method AddressSpace Definition

Attribute Value

BrowseName Hold

References NodeClass BrowseName DataType TypeDefinition ModellingRule

6.7.15 RemoteCommand Method

This Method is used to issue a command to the UA Server that can then be passed on to either other
internal system as illustrated in Figure 19

Machine

UA Server – with single
PackML Model

Drive 1

Drive 2

Drive 3

Drive 4

Internal OPC UA Client

External Client

R
em

o
te

 C
o

m
m

an
d

Vendor specific
communication

R
em

o
te

 C
o

m
m

an
d

Figure 19 - Remote Command and Internal systems

or it can be used to pass information on to an upstream or downstream system as illustrated in Figure
20. In both cases, it is up to the UA Server and/or the underlying system to determine when the
command is actually passed on.

OPC 30050: PackML 57 RC 1.01

Machine Upstream Machine

Re
m

ot
eC

om
m

an
d

[2
]

Downstream Machine

Controller PLC PLC/Controller

Control logic
–

with PackML
Model

OPC UAClient

OPC UA Server

Re
m

ot
eC

om
m

an
d

[2
]

Control
logic

Re
m

ot
eC

om
m

an
d

[3
]

Re
m

ot
eC

om
m

an
d

[3
]

R
e

m
o

te
C

o
m

m
a

n
d[

2
]

R
e

m
o

te
C

o
m

m
a

n
d[

2
]

Re
m

ot
eC

om
m

an
d

[2
]

R
e

m
o

te
C

o
m

m
a

n
d[

2
]

Line Unit

Control logic
–

with PackML
Model

RemoteCommand[1] RemoteCommand[3] RemoteCommand[1] RemoteCommand[2] RemoteCommand[1] RemoteCommand[1]

Remote
Command[1]

Remote
Command[3]

Remote
Command[1]

Remote
Command[1]

Remote
Command[1]

Remote
Command[2]

Figure 20 - Remote Command – Line and Upstream/Downstream systems

The RemoteCommand Method parameters are defined in Table 53

Signature

RemoteCommand(
 [in] PackMLRemoteInterfaceDataType[] RemoteInterface);

Table 53 - RemoteCommand Method Parameters
Argument Description

RemoteInterface This structure is an array of remote interface information which include Number,
ControlCmdNumber, CmdValue and Parameter. Parameter itself is a structure formally
defined in 6.5.4. The PackMLRemoteInterfaceDataType is formally defined in 6.5.7

Method result codes are defined in Table 54.

Table 54 - RemoteCommand Method result codes
Result Code Description

Bad_MethodInvalid See OPC 10000-4 – Services for the description of this result code. (The
Method id does not refer to a Method for the specified Object.)

Bad_NotImplemented See OPC 10000-4 – Services for the description of this result code.
(Requested operation is not implemented.)

Bad_NodeIdUnknown See OPC 10000-4 – Services for the description of this result code. (Used to
indicate that the specified Object is not valid)

Bad_InvalidState See OPC 10000-4 – Services for the description of this result code. (The
operation cannot be completed because the Object is closed, uninitialized or
in some other invalid state.)

Bad_MethodInvalid See OPC 10000-4 – Services for the description of this result code. (The
Method id does not refer to a Method for the specified Object.)

Bad_ArgumentsMissing See OPC 10000-4 – Services for the description of this result code (The Client
did not specify all of the input arguments for the Method.)

Bad_TooManyArguments See OPC 10000-4 – Services for the description of this result code (The Client
specified more input arguments than defined for the Method.)

OPC UA for PackML 58 RC 1.01

Bad_InvalidArgument See OPC 10000-4 – Services for the description of this result code. (Used to
indicate in the operation level results that one or more of the input arguments
are invalid. The inputArgumentResults contain the specific status code for
each invalid argument.)

Bad_TypeMismatch See OPC 10000-4 – Services for the description of this result code. (Used to
indicate that an input argument does not have the correct data type.)

Table 55 specifies the AddressSpace representation for the RemoteCommand Method.
RemoteCommand includes an array of InputArguments, where the input argument details are provided

in Table 53.

Table 55 – RemoteCommand Method AddressSpace Definition

Attribute Value

BrowseName RemoteCommand

References NodeClass BrowseName DataType TypeDefinition ModellingRule

HasProperty Variable InputArguments Argument[] PropertyType Mandatory

6.7.16 SetInterlock Method

This Method allows an OPC UA Client to set an interlock associated with this PackML system. The
parameters for the SetInterlock Method are defined in Table 56.

Signature

SetInterlock(

 [in] NodeId InterlockId,

 [in] Boolean State);

Table 56 - SetInterlock Method Parameters
Argument Description

InterlockId The NodeId of the interlock to set or reset.

State The state that the targeted interlock should be set to. True is set to interlocked,
false is not interlocked.

Method result codes are defined in Table 57

Table 57 - SetInterlock Method result codes
Result Code Description

Bad_MethodInvalid See OPC 10000-4 – Services for the description of this result code. (The
Method id does not refer to a Method for the specified Object.)

Bad_NotImplemented See OPC 10000-4 – Services for the description of this result code.
(Requested operation is not implemented.)

Bad_NodeIdUnknown See OPC 10000-4 – Services for the description of this result code. (Used to
indicate that the specified Object is not valid)

Bad_InvalidState See OPC 10000-4 – Services for the description of this result code. (The
operation cannot be completed because the Object is closed, uninitialized or
in some other invalid state.)

Bad_MethodInvalid See OPC 10000-4 – Services for the description of this result code. (The
Method id does not refer to a Method for the specified Object.)

Bad_ArgumentsMissing See OPC 10000-4 – Services for the description of this result code (The Client
did not specify all of the input arguments for the Method.)

Bad_TooManyArguments See OPC 10000-4 – Services for the description of this result code (The Cl ient
specified more input arguments than defined for the Method.)

Bad_InvalidArgument See OPC 10000-4 – Services for the description of this result code. (Used to
indicate in the operation level results that one or more of the input arguments
are invalid. The inputArgumentResults contain the specific status code for
each invalid argument.)

Bad_TypeMismatch See OPC 10000-4 – Services for the description of this result code. (Used to
indicate that an input argument does not have the correct data type.)

Table 58 specifies the AddressSpace representation for the SetInterlock Method. SetInterlock includes
an array of InputArguments, where the input argument details are provided in Table 56.

OPC 30050: PackML 59 RC 1.01

Table 58 – SetInterlock Method AddressSpace Definition

Attribute Value

BrowseName SetInterlock

References NodeClass BrowseName DataType TypeDefinition ModellingRule

HasProperty Variable InputArguments Argument[] PropertyType Mandatory

6.7.17 SetParameter Method

This Method allows an OPC UA Client to set the parameters that are by the machine.

Signature

SetParameter(

 [in] PackMLDescriptorDataType[] Parameter

);

Table 59 - SetParameter Method Parameters
Argument Description

Parameter The array of parameter that can be used by the method

Method result codes are defined in Table 60

Table 60 - SetParameter Method result codes
Result Code Description

Bad_MethodInvalid See OPC 10000-4 – Services for the description of this result code. (The
Method id does not refer to a Method for the specified Object.)

Bad_NotImplemented See OPC 10000-4 – Services for the description of this result code.
(Requested operation is not implemented.)

Bad_NodeIdUnknown See OPC 10000-4 – Services for the description of this result code. (Used to
indicate that the specified Object is not valid)

Bad_InvalidState See OPC 10000-4 – Services for the description of this result code. (The
operation cannot be completed because the Object is closed, uninitialized or
in some other invalid state.). If a machine determines that it is not in a state
that allows parameter changes this error is returned.

Bad_MethodInvalid See OPC 10000-4 – Services for the description of this result code. (The
Method id does not refer to a Method for the specified Object.)

Table 61 specifies the AddressSpace representation for the SetParameter Method. SetParameter
includes an array of InputArguments, where the input argument details are provided in Table 59.

Table 61 – SetParameter Method AddressSpace Definition

Attribute Value

BrowseName SetParameter

References NodeClass BrowseName DataType TypeDefinition ModellingRule

HasProperty Variable InputArguments Argument[] PropertyType Mandatory

6.8 Alarms

6.8.1 Overview

The section defines alarms. Alarms in PackML are provided via a set of tags. Alarms in OPC UA are
provided via events and a full alarming system. This is a preferred method for providing alarms, but it
does require some additional overhead. To allow the PackML information model to be implemented in
smaller devices it was decided to initially support the existing Tag based representation of Alarm
information, and to add the OPC UA Event based definition of alarms in the next release. Servers shall
be able to report alarms in both manners, and Clients can use the manner that is most appropriate for
them. Some smaller device might find it easier to just access the tags for Alarm information, but display
system or other HMIs would probably make use of the OPC UA Event based system for alarming.

OPC UA for PackML 60 RC 1.01

6.8.2 Alarm Tags

6.8.2.1 Overview

The following VariableType is used to report alarms in the PackML unit. In addition, the data is also
available as a structured datatype, which is much like an event.

6.8.2.2 PackMLAlarmDataType

The PackMLAlarmDataType provides the PackML tag alarm structure. It is formally defined in Table
62.

Table 62 – PackMLAlarmDataType Structure

Name Type Description

PackMLAlarmDataType Structure

 ID Int32 A unique number assigned to each type of alarm, stop or warning.

 Value Int32 An alarm, stop or warning message number associated to the ID to allow for
user specific detail or to break down the Alarm.ID to greater detail

 Message String The actual text of the alarm, stop or warning for those machines capable of
providing string information

 Category Int32 A user defined value which indicates what type of alarm, stop or warning
has occurred. E.g. electrical, mechanical, process limit, …

 DateTime UtcTime The date and time that the alarm, stop or warning occurred

 AckDateTime UtcTime The date and time that the alarm, stop or warning was Acknowledged,

 Trigger Boolean This variable is true when the alarm is active

6.8.3 Alarm Events

[note: This section will be defined in a future release]

OPC 30050: PackML 61 RC 1.01

7 Profile

7.1 Conformance Unit

7.1.1 Overview

This section defines ConformanceUnits that are specific to the OPC UA PackML Information model.
These ConformanceUnits are separated into ConformanceUnits that are Server specific and those that
are Client specific.

7.1.2 Server

Table 63 defines the Server based ConformanceUnits.

Table 63 – PackML Server Information Model

Categor
y

Title Description

Server PackML Base Functionality The server supports the BaseObjectModel. This includes exposing
all mandatory objects, variables and methods.

Server PackML Base TagID The Server supports the TagID Property

Server PackML Base Version The Server supports the Version property and DataType

Server PackML Base Admin The Server support all of the mandatory items in the
PackMLAdminObjectType

Server PackML Base Status The Server support all of the mandatory items in the
PackMLStatusObjectType

Server PackML State Information The server supports the BaseStateMachine. This include the list of
AvailableStates and AvailableTransitions. It also includes all
mandatory states and any method associated with the states. The
certification will include a list of all states and transitions supported
by the StateMachine. This include the mandatory Sub-
statemachines

Server PackML State Abort The server supports the Abort Method

Server PackML State Clear The server supports the Clear Method

Server PackML State Stop The server supports the Stop Method

Server PackML State Reset The server supports the Reset Method

Server PackML State Complete The server supports the Complete Method

Server PackML State Start The server supports the Start Method

Server PackML State Unhold The server supports the Unhold Method

Server PackML State Suspend The server supports the Suspend Method

Server PackML State Hold The server supports the Hold Method

Server PackML State Unsuspend The server supports the Unsuspend Method

Server PackML SetUnitMode The Server supports the SetUnitMode Method

Server PackML Set Product The Server supports the SetProduct Method

Server PackML Machine Speed The Server supports the SetMachSpeed Method

Server PackML RemoteCommand The Server supports the RemoteCommand Method

Server PackML SetInterlock The Server supports the SetInterlock Method

Server PackML Status
UnitModeRequested

The Server support the UnitModeChangeInProgress flag

Server PackML Status
UnitModeChangeInProgress

The Server support the UnitModeChangeInProgress flag

Server PackML Status State The Server supports the StateRequested and
StateChangeInProgress flag

Server PackML Status Interlock The Server includes support for at least one MaterialInterlock and
the summary MaterialInterlocked flag.

Server PackML Status
RemoteParameter

The Server supports exposing of the configured RemoteParameter

Server PackML Status Product The Server supports exposing of the configured product data

Server PackML Admin Alarm The server supports the PackML Alarm instance including the Alarm
extent.

Server PackML Admin Alarm History The server supports the PackML AlarmHistory including the Alarm
history extent.

Server PackML Admin Warning The server supports the PackML warning instance including the
warning extent.

Server PackML Admin Stop The server supports the PackML stop reason including the stop
reason extent

OPC UA for PackML 62 RC 1.01

Categor
y

Title Description

Server PackML Admin mode statistics The server supports the ModeCurrentTime and cumulative time
statistics

Server PackML Admin state Statistics The server supports the StateCurrentTime and cumulative time
statistics

Server PackML Admin The server supports the prodrelated counts including
ProdConsumedCount, ProdProcessedCount and
ProdDefectiveCount.

Server PackML Admin ResetTime The server supports the PackML Time since reset

Server PackML Admin machine speed. The server supports the PackML Machine Design Speed

Server PackML Machine Speed The Server supports the CurMachSpeed information including units

Server PackML Equipment Blocked The Server supports the EquipmentBlocked flag

Server PackML Equipment Starved The Server supports the EquipmentStarved flag

Server PackML ProdDefectiveCount The Server supports ProdDefectiveCount

Server PackML ProdProcessedCount The Server supports ProdProcessedCount

\

7.1.3 Client

Table 64 defines the Client based ConformanceUnits.

Table 64 – PackML Client Information Model

Category Title Description Derived

Client PackML Base
Functionality Client

The Client makes use of the BaseObjectModel. This
includes exposing all mandatory objects, variables and
methods.

Client PackML Base TagID
Client

The Client makes use of the TagID Property

Client PackML Base Version
Client

The Client makes use of the Version property and
DataType

Client PackML Base Admin
Client

The Client makes use of all of the mandatory items in the
PackMLAdminObjectType

Client PackML Base Status
Client

The Client makes use of all of the mandatory items in the
PackMLStatusObjectType

Client PackML State
Information Client

The Client makes use of the BaseStateMachine. This
include the list of AvailableStates and AvailableTransitions.
It also includes all mandatory states and any method
associated with the states. The certification will include a
list of all states and transitions used by the Client. This
include the mandatory Sub-statemachines

Client PackML State Abort
Client

The Client makes use of the Abort Method

Client PackML State Clear
Client

The Client makes use of the Clear Method

Client PackML State Stop
Client

The Client makes use of the Stop Method

Client PackML State Reset
Client

The Client makes use of the Reset Method

Client PackML State
Complete Client

The Client makes use of the Complete Method

Client PackML State Start
Client

The Client makes use of the Start Method

Client PackML State Unhold
Client

The Client makes use of the Unhold Method

Client PackML State
Suspend Client

The Client makes use of the Suspend Method

Client PackML State Hold
Client

The Client makes use of the Hold Method

Client PackML State
Unsuspend Client

The Client makes use of the Unsuspend Method

OPC 30050: PackML 63 RC 1.01

Category Title Description Derived

Client PackML SetUnitMode
Client

The Client makes use of the SetUnitMode Method

Client PackML Set Product
Client

The Client makes use of the SetProduct Method

Client PackML Machine
Speed Client

The Client makes use of the SetMachSpeed Method

Client PackML
RemoteCommand
Client

The Client makes use of the optional RemoteCommand
Method

Client PackML SetInterlock
Client

The Client makes use of the optional SetInterlock Method

Client PackML-Status
UnitModeChangeInPro
gress Client

The Client makes use of the UnitModeChangeInProgress
flag

Client PackML-Status State
Client

The Client makes use of the StateRequested and
StateChangeInProgress flag

Client PackML-Status
Interlock Client

The Client makes use of at least one MaterialInterlock and
the summary MaterialInterlocked flag.

Client PackML-Status
RemoteParameter
Client

The Client makes use of exposing of the configured
RemoteParameter

Client PackML Status
Product Client

The Client makes use of exposing of the configured
product data

Client PackML-Admin Alarm
Client

The Client makes use of the PackML Alarm instance
including the Alarm extent.

Client PackML-Admin Alarm
History Client

The Client makes use of the PackML AlarmHistory
including the Alarm history extent.

Client PackML-Admin
Warning Client

The Client makes use of the PackML warning instance
including the warning extent.

Client PackML-Admin Stop
Client

The Client makes use of the PackML stop reason including
the stop reason extent

Client PackML-Admin mode
statistics Client

The Client makes use of the ModeCurrentTime and
cumulative time statistics

Client PackML-Admin state
Statistics Client

The Client makes use of the StateCurrentTime and
cumulative time statistics

Client PackML-Admin Client The Client makes use of the prodrelated counts including
ProdConsumedCount, ProdProcessedCount and
ProdDefectiveCount.

Client PackML-Admin
ResetTime Client

The Client makes use of the PackML Time since reset

Client PackML-Admin
machine speed. Client

The Client makes use of the PackML Machine Design
Speed

Client PackML Machine
Speed Client

The Client makes use of the CurMachSpeed information
including units

Client PackML Equipment
Blocked Client

The Client makes use of the EquipmentBlocked flag

Client PackML Equipment
Starved Client

The Client makes use of the EquipmentStarved flag

Client PackML
ProdDefectiveCount
Client

The Client makes use of ProdDefectiveCount

Client PackML
ProdProcessedCount
Client

The Client makes use of ProdProcessedCount

7.2 Facet

7.2.1 Overview

The section describes the various Facets that are provided as part of the OPC UA PackML information
model. These Facets include information model ConformanceUnits, but they also include
ConformanceUnits or Facets from the base OPC UA Profile specification.

Table 65 - PackML Profiles

OPC UA for PackML 64 RC 1.01

Profile Related
Category

URI

PackML Base Functionality Server Facet PackML
Model

http://opcfoundation.org/UA-
Profile/Server/PackML/BaseFunctionServer

PackML Base Client Facet PackML
Model

http://opcfoundation.org/UA-
Profile/Client/PackML/BaseFunctionClient

7.2.2 Server

7.2.2.1 PackML Base Server Facet

Table 66 defines a Profile that describes the base characteristics that all OPC UA Servers shall support,

if they support the PackML companion specification.

Table 66 - PackML Base Functionality Server Facet

Group Conformance Unit / Profile Title Optional

Profile Standard DataChange Subscription Server Facet

Profile Core Server Facet

Profile UA-TCP UA-SC UA Binary

Profile Data Access Server Facet

Monitored Item
Services

Monitor MinQueueSize_05 False

Profile Method Server Facet

Profile Security Time Synchronization

PackML Model PackML Base Functionality False

PackML Model PackML Base Admin False

PackML Model PackML Base Status False

PackML Model PackML State Information False

PackML Model PackML State Abort True

PackML Model PackML State Clear True

PackML Model PackML State Stop True

PackML Model PackML State Reset True

PackML Model PackML State Complete True

PackML Model PackML State Start True

PackML Model PackML State Unhold True

PackML Model PackML State Suspend True

PackML Model PackML State Hold True

PackML Model PackML State Unsuspend True

PackML Model PackML StateModel extensions True

PackML Model PackML SetUnitMode True

PackML Model PackML Set Product True

PackML Model PackML Machine Speed True

PackML Model PackML RemoteCommand True

PackML Model PackML SetInterlock True

PackML Model PackML Status UnitModeRequested True

PackML Model PackML Status UnitModeChangeInProgress True

PackML Model PackML Status State True

PackML Model PackML Status Interlock True

PackML Model PackML Status RemoteParameter True

PackML Model PackML Status Product True

PackML Model PackML Admin Alarm True

PackML Model PackML Admin Alarm History True

PackML Model PackML Admin Warning True

PackML Model PackML Admin Stop True

PackML Model PackML Admin mode statistics True

PackML Model PackML Admin state Statistics True

PackML Model PackML Admin True

PackML Model PackML Admin ResetTime True

PackML Model PackML Admin machine speed. True

PackML Model PackML Machine Speed True

PackML Model PackML Equipment Blocked True

PackML Model PackML Equipment Starved True

PackML Model PackML ProdDefectiveCount True

http://opcfoundation.org/UA-Profile/Server/PackML/BaseFunctionServer
http://opcfoundation.org/UA-Profile/Server/PackML/BaseFunctionServer
http://opcfoundation.org/UA-Profile/Client/PackML/BaseFunctionClient
http://opcfoundation.org/UA-Profile/Client/PackML/BaseFunctionClient

OPC 30050: PackML 65 RC 1.01

Group Conformance Unit / Profile Title Optional

PackML Model PackML ProdProcessedCount True

PackML Model PackML Base TagID True

PackML Model PackML Base Version True

This Profile includes a number of Profiles and ConformanceUnits.

7.2.3 Client

7.2.3.1 PackML Base Client Facet

Table 67 defines a Facet that describes the base characteristics for all OPC UA Clients that make use
of this companion specification. Additional Profiles will define support for various object models that

are part of this specification.

Table 67 - PackML Base Client Facet

Group Conformance Unit / Profile Title Optional

Profile AddressSpace Lookup Client Facet

Profile DataAccess Client Facet

Profile DataChange Subscriber Client Facet

Profile Method Client Facet

Profile UA-TCP UA-SC UA Binary

Profile Security Time Synchronisation

Session Services Session Client Base False

Session Services Session Client Renew NodeIds False

Session Services Session Client KeepAlive False

Session Services Session Client Detect Shutdown False

PackML Model PackML Base Functionality Client False

PackML Model PackML Base Version Client False

PackML Model PackML Base Status Client False

PackML Model PackML State Information Client False

PackML Model PackML Base TagID Client True

PackML Model PackML Base Version Client True

PackML Model PackML State Abort Client True

PackML Model PackML State Clear Client True

PackML Model PackML State Stop Client True

PackML Model PackML State Reset Client True

PackML Model PackML State Complete Client True

PackML Model PackML State Start Client True

PackML Model PackML State Unhold Client True

PackML Model PackML State Suspend Client True

PackML Model PackML State Hold Client True

PackML Model PackML State Unsuspend Client True

PackML Model PackML SetUnitMode Client True

PackML Model PackML Set Product Client True

PackML Model PackML Machine Speed Client True

PackML Model PackML RemoteCommand Client True

PackML Model PackML SetInterlock Client True

PackML Model PackML-Status UnitModeChangeInProgress Client True

PackML Model PackML-Status State Client True

PackML Model PackML-Status Interlock Client True

PackML Model PackML-Status RemoteParameter Client True

PackML Model PackML Status Product Client True

PackML Model PackML-Admin Alarm Client True

PackML Model PackML-Admin Alarm History Client True

PackML Model PackML-Admin Warning Client True

PackML Model PackML-Admin Stop Client True

PackML Model PackML-Admin mode statistics Client True

PackML Model PackML-Admin state Statistics Client True

PackML Model PackML-Admin Client True

PackML Model PackML-Admin ResetTime Client True

OPC UA for PackML 66 RC 1.01

Group Conformance Unit / Profile Title Optional

PackML Model PackML-Admin machine speed. Client True

PackML Model PackML Machine Speed Client True

PackML Model PackML Equipment Blocked Client True

PackML Model PackML Equipment Starved Client True

PackML Model PackML ProdDefectiveCount Client True

PackML Model PackML ProdProcessedCount Client True

8 Namespaces

8.1 Namespace Metadata

Table 68 defines the namespace metadata for this specification. The Object is used to provide version
information for the namespace and an indication about static Nodes. Static Nodes are identical for all
Attributes in all Servers, including the Value Attribute. See OPC 10000-5 for more details.

The information is provided as Object of type NamespaceMetadataType. This Object is a component
of the Namespaces Object that is part of the Server Object. The NamespaceMetadataType ObjectType
and its Properties are defined in OPC 10000-5.

The version information is also provided as part of the ModelTableEntry in the UANodeSet XML file.
The UANodeSet XML schema is defined in OPC 10000-6.

Table 68 – NamespaceMetadata Object for this Specification

Attribute Value

BrowseName http://opcfoundation.org/UA/PackML/

References BrowseName DataType Value

HasProperty NamespaceUri String http://opcfoundation.org/UA/PackML/

HasProperty NamespaceVersion String 1.01

HasProperty NamespacePublicationDate DateTime 2020-09-01

HasProperty IsNamespaceSubset Boolean False

HasProperty StaticNodeIdTypes IdType[] {Numeric}

HasProperty StaticNumericNodeIdRange NumericRange[] Null

HasProperty StaticStringNodeIdPattern String Null

8.2 Handling of OPC UA namespaces

Namespaces are used by OPC UA to create unique identifiers across different naming authorities. The
Attributes NodeId and BrowseName are identifiers. A node in the UA Address Space is unambiguously
identified using a NodeId. Unlike NodeIds, the BrowseName cannot be used to unambiguously identify
a node. Different Nodes may have the same BrowseName. They are used to build a browse path
between two nodes or to define a standard Property.

Servers may often choose to use the same namespace for the NodeId and the BrowseName. However,
if they want to provide a standard Property, its BrowseName shall have the namespace of the
standards body although the namespace of the NodeId reflects something else, for example the
EngineeringUnits Property. All NodeIds of Nodes not defined in this specification shall not use the

standard namespaces.

Table 69 provides a list of mandatory and optional namespaces used in a PackML OPC UA Server.

Table 69 – Namespaces used in a PackML Server

NamespaceURI Description Use

http://opcfoundation.org/UA/ Namespace for NodeIds and BrowseNames defined in the
OPC UA specification. This namespace shall have namespace
index 0.

Mandatory

Local Server URI Namespace for nodes defined in the local server. This may
include types and instances used in an AutoID Device
represented by the server. This namespace shall have
namespace index 1.

Mandatory

http://opcfoundation.org/UA/PackML/ Namespace for NodeIds and BrowseNames defined in this
specification. The namespace index is server specific.

Mandatory

Vendor specific types A server may provide vendor specific types like types derived
from PackMLBaseObjectType or PackMLStatusObjectType in
a vendor specific namespace.

Optional

OPC 30050: PackML 67 RC 1.01

NamespaceURI Description Use

Vendor specific instances A server provides vendor specific instances of devices in a
vendor specific namespace.

Mandatory

Table 70 provides a list of namespaces and their index used for BrowseNames in this specification.
The default namespace of this specification is not listed since all BrowseNames without prefix use this

default namespace.

Table 70 – Namespaces used in this specification

NamespaceURI Namespace Index Example

http://opcfoundation.org/UA/ 0 0:EngineeringUnits

http://opcfoundation.org/UA/PackML/ <server specific> Parameter

OPC UA for PackML 68 RC 1.01

Annex A(normative): PackML Namespace and Mappings

A.1 Namespace and identifiers for PackML Information Model

 This section defines the numeric identifiers for all of the numeric NodeIds defined by the PackML OPC
UA Specification. The identifiers are specified in a CSV file with the following syntax:

<SymbolName>, <Identifier>, <NodeClass>

Where the SymbolName is either the BrowseName of a Type Node or the BrowsePath for an Instance
Node that appears in the specification and the Identifier is numeric value for the NodeId.

The BrowsePath for an instance Node is constructed by appending the BrowseName of the instance
Node to BrowseName for the containing instance or type. A ‘_’ character is used to separate each
BrowseName in the path. For example, OPC 10000-5 defines the ServerType ObjectType Node which
has the NamespaceArray Property . The SymbolName for the NamespaceArray InstanceDeclaration
within the ServerType declaration is: ServerType_NamespaceArray. OPC 10000-5 also defines a
standard instance of the ServerType ObjectType with the BrowseName ‘Server’. The BrowseName for
the NamespaceArray Property of the standard Server Object is: Server_NamespaceArray. Another
example: the PackMLBaseObjectType ObjectType Node which has the TagID Variable. The Name for
the TagID InstanceDeclaration within the PackMLBaseObjectType declaration is:
PackMLBaseObjectType_TagID.

The CSV associated with this version of the standard can be found here:

http://www.opcfoundation.org/UA/schemas/PackML/1.01/PackML.NodeIds.csv

NOTE The latest CSV that is compatible with this version of the standard can be found here:

http://www.opcfoundation.org/UA/schemas/PackML/PackML.NodeIds.csv

The XML UANodeSet file that is a definition of the InformationModel generated by this specification.
The UANodeSet description is available from the OPC Foundation web site
(http://www.opcfoundation.org/UA/schemas/PackML/1.01/Opc.Ua.PackML.NodeSet2.xml) as an XML
file. It uses the import/export format defined in OPC 10000-5. This file can be directly used by a Server
that wishes to expose the InformationModel (types) defined in this specification. This

The NamespaceUri for all NodeIds defined here is http://opcfoundation.org/UA/PackML/

A computer processible version of the complete Information Model defined in this standard is also
provided. It follows the XML Information Model schema syntax defined in OPC 10000-6.

The Information Model Schema released with this version of the standard can be found here:
http://www.opcfoundation.org/UA/schemas/PackML/1.01/Opc.Ua.PackML.NodeSet2.xml

NOTE The latest Information Model schema that is compatible with this version of the standard can be found here:

http://www.opcfoundation.org/UA/schemas/PackML/Opc.Ua.PackML.NodeSet2.xml

http://www.opcfoundation.org/UA/schemas/PackML/1.01/PackML.NodeIds.csv
http://www.opcfoundation.org/UA/schemas/PackML/PackML.NodeIds.csv
http://www.opcfoundation.org/UA/schemas/PackML/1.01/Opc.Ua.PackML.NodeSet2.xml
http://opcfoundation.org/UA/PackML/
http://www.opcfoundation.org/UA/schemas/PackML/1.01/Opc.Ua.PackML.NodeSet2.xml
http://www.opcfoundation.org/UA/schemas/PackML/Opc.Ua.PackML.NodeSet2.xml

OPC 30050: PackML 69 RC 1.01

Annex B(informative): Recommended localized names

B.1 Recommended state names for StateMachine Variables

B.1.1 LocaleId “en”

The recommended state display names for the LocaleId “en” and the State values for all StateMachines
defined in this specification are listed in Table B.1

Table B.1 – Recommended display names for LocaleId “en”

StateMachine Browse Name display name State Value

PackMLBaseStateMachineType

Cleared Cleared 18

Aborting Aborting 8

Aborted Aborted 9

PackMLMachineStateMachineType Running Running 19

Clearing Clearing 1

Stopping Stopping 7

Stopped Stopped 2

PackMLExecuteStateMachineType

Resetting Resetting 15

Idle Idle 4

Starting Starting 3

Unsuspending Unsuspending 14

Suspended Suspended 5

Suspending Suspending 13

Execute Execute 6

Holding Holding 10

Held Held 11

Unholding Unholding 12

Completing Completing 16

Complete Complete 17

B.1.2 LocaleId “de”

The recommended state display names for the LocaleId “de” are listed in Table B.2
 .

Table B.2 - Recommended display names for LocaleId “de”
StateMachine Browse Name display name

PackMLBaseStateMachineType

Cleared Geleert

Aborting Abbrechen

Aborted Abgebrochen

PackMLMachineStateMachineType Running Im Betrieb

Clearing Leeren

Stopping Stoppen

Stopped Gestoppt

PackMLExecuteStateMachineType

Resetting Rücksetzen

Idle Leerlauf

Starting Anlaufen

Unsuspending
Aus Bereitschaft
anlaufen

Suspended In Bereitschaft

Suspending Aussetzend

Execute Ausführen

Holding Innehalten

Held Angehalten

Unholding Wiederanlaufen

Completing Fertigstellen

Complete Vollständig

B.1.3 LocaleId “fr”

The recommended state display names for the LocaleId “fr” are listed in Table B.3

OPC UA for PackML 70 RC 1.01

Table B.3 - Recommended display names for LocaleId “fr”

StateMachine Browse Name display name

PackMLBaseStateMachineType

Cleared Nettoyé

Aborting Annulation

Aborted Annulé

PackMLMachineStateMachineType Running En fonction

Clearing Nettoyage

Stopping En cours d’arrêt

Stopped Arrêté

PackMLExecuteStateMachineType

Resetting Réinitialisation

Idle Suspendu

Starting Démarrage

Unsuspending Repris

Suspended Suspendu

Suspending Suspendu (ing)

Execute Execute

Holding Tenu (ing)

Held Tenu

Unholding Libéré

Completing Achevé (ing)

Complete Achevé

OPC 30050: PackML 71 RC 1.01

Annex C: DataType (Non-Normative)

C.1 Mapping of elementary data types

The mapping of IEC 61131-3 elementary data types to OPC UA data types is formally defined in OPC
30000 (PLCOpen companion specification). Table 71 is copied from that specification as a reference,
any differences with OPC 30000 indicate that this specification is out of date.

Table 71 – Mapping IEC 61131-3 elementary data types to OPC UA built in data types

IEC 61131-3
elementary data
types

OPC UA built
in data types

Comment

BOOL Boolean A one bit value (true or false).

SINT SByte An 8 bit signed integer value.

USINT Byte An 8 bit unsigned integer value.

INT Int16 A 16 bit signed integer value.

UINT UInt16 A 16 bit unsigned integer value.

DINT Int32 A 32 bit signed integer value.

UDINT UInt32 A 32 bit unsigned integer value.

LINT Int64 A 64 bit signed integer value.

ULINT UInt64 A 64 bit unsigned integer value.

BYTE Byte The PLC open specific OPC UA simple data type BYTE is derived from
the built in data type Byte. It describes that the type is used as bit string
of length 8.

WORD UInt16 The PLC open specific OPC UA simple data type WORD is derived
from the built in data type UInt16. It describes that the type is used as
bit string of length 16

DWORD UInt32 The PLC open specific OPC UA simple data type DWORD is derived
from the built in data type UInt32. It describes that the type is used as
bit string of length 32

LWORD UInt64 The PLC open specific OPC UA simple data type LWORD is derived
from the built in data type UInt64. It describes that the type is used as
bit string of length 64

REAL Float OPC UA definition: An IEEE-754 single precision (32 bit) floating point
value.

IEC 61131-3 definition: Real (32 bit) with a range of values as defined in
IEC 60559 for the basic single width floating-point format.

Both standards are identical.

LREAL Double OPC UA definition: An IEEE-754 double precision (64 bit) floating point
value.

IEC 61131-3 definition: Long real (64 bit) with a range of values as
defined in IEC 60559 for the basic double width floating-point format.

Both standards are identical.

STRING String The PLC open specific OPC UA simple data type STRING is derived
from the built in data type String. It describes that the type is used as a
variable-length single-byte character string.

CHAR Byte The PLC open specific OPC UA simple data type CHAR is derived from
the built in data type Byte. It describes that the type is used as single-
byte character

WSTRING String OPC UA definition: A sequence of UTF8 characters.

IEC 61131-3 definition: Variable-length double-byte character string

WCHAR UInt16 The PLC open specific OPC UA simple data type WCHAR is derived
from the built in data type UInt16. It describes that the type is used as
double-byte character.

DT
DATE_AND_TIME

DateTime OPC UA definition: A 64-bit signed integer which represents the number
of 100 nanosecond intervals since January 1, 1601.

IEC 61131-3 definition: Date and time of day.

DATE DateTime The PLC open specific OPC UA simple data type DATE is derived from
the built in data type DateTime. It describes that the type is used as a
date only.

TOD
TIME_OF_DAY

DateTime The PLC open specific OPC UA simple data type TOD is derived from
the built in data type DateTime. It describes that the type is used as
time of day only.

TIME Double

The OPC UA simple data type Duration is derived from the built in data
type Double. It describes that the type is used as interval of time in
milliseconds.

C.2 Mapping of generic data types

OPC UA for PackML 72 RC 1.01

The mapping of IEC 61131-3 generic data types to OPC UA DataTypes is formally defined in OPC
30000 (PLCOpen companion specification). Table 72. is copied from that specification as a reference,
any differences with OPC 30000 indicate that this specification is out of date. This mapping definition
is defined for completeness but is normally not used in an OPC UA AddressSpace.

Table 72 – Mapping IEC 61131-3 generic data types to OPC UA data types

IEC 61131-3 generic data
types

OPC UA data
types

Description

ANY BaseDataType This abstract OPC UA DataType defines a value that can have any valid
OPC UA DataType. ANY_DERIVED BaseDataType

 ANY_ELEMENTARY BaseDataType

 ANY_MAGNITUDE BaseDataType

 ANY_NUM Number This abstract OPC UA DataType defines a number value that can have any
of the OPC UA Number subtypes. ANY_REAL Number

 ANY_INT Number

 ANY_BIT Number

 ANY_STRING String This OPC UA Built-in DataType defines a Unicode character string that
should exclude control characters that are not whitespaces (0x00 - 0x08,
0x0E-0x1F or 0x7F).

 ANY_DATE DateTime This OPC UA Built-in DataType defines a Gregorian calendar date. It is a 64-
bit signed integer which represents the number of 100 nanosecond intervals
since January 1, 1601.

C.3 Mapping of derived data types

C.3.1 Mapping of enumerated data types

Both OPC UA and IEC 61131-3 allow the definition of enumerations on a data type or on a variable
instance.

In OPC UA the enumerated DataTypes are defined as subtypes of Enumeration. The data has an
EnumStrings Property that contains the possible string values. The value is transferred as integer on
the wire where the integer defines the index into the EnumStrings array. The index is zero based and
has no gaps. Another option is to provide the possible string values in the Property EnumValues. This
option is used if individual integer values are assigned to the string. The used option depends on the
way the string enumeration is defined in the Controller program. If integer values are assigned to the
string values the Property EnumValues is used to represent the enumeration values. If the integer
value is zero based and has no gaps the EnumStrings Property should be used since the processing

on the client side is more efficient.

The definition on a variable instance is using the MultiStateDiscreteType Variable Type which defines
also the EnumStrings or the EnumValues Property containing the enumeration values as string array.

Example for an enumerated data type declaration in IEC 61131-3:

TYPE

 ANALOG_SIGNAL_TYPE : (SINGLE_ENDED, DIFFERENTIAL);

END_TYPE

Example for use of an enumeration in a Ctrl Variable instantiation in IEC 61131-3:

VAR

 Y : (Red, Yellow, Green);

END_VAR

C.3.2 Mapping of array data types

OPC UA provides the information if a value is an array in the Variable Attributes ValueRank and
ArrayDimensions. Every data type can be exposed as array. Arrays can have multiple dimensions.
The dimension is defined through the Attribute ValueRank. Arrays can have variable or fixed lengths.
The length of each dimension is defined by the Attribute ArrayDimensions. The array index starts with

zero.

OPC 30050: PackML 73 RC 1.01

IEC 61131-3 allows the declaration of array data types with one or multiple dimensions and an index
range instead of a length.

OPC UA has no standard concept for defining special array data types or exposing index ranges.

Example for an array data type declaration in IEC 61131-3:

TYPE

 ANALOG_16_INPUT_DATA : ARRAY [1..16] OF INT ;

END_TYPE

Example for use of an array in a Ctrl Variable instantiation in IEC 61131-3:

VAR

 MyArray : ARRAY [1..16] OF INT;

END_VAR

OPC UA for PackML 74 RC 1.01

Annex D: Revision / Change Log

D.1 Main changes from V1.00 to V1.01

Inconsistencies in description fixed as well as several misspellings. These are not explicit listed in the
chapter.

Topic PackMLBaseObjectType – PackMLVersion data type change

Errata Version 1.0

Spec Reference 6.3.2 – Table 3

Mantis Reference

Problem Statement Variable showed before only PackML Version. It should include also
OPC UA Comp.Spec Version

Solution / Change Change back to solution like used in Version 1.0.1 with
PackMLVersion as HasProperty in the object with String as
datatype. See “option 2” in the remark the line below.

Remark Option 1:
Change from BaseDataVariableType to
PackMLVersionVariableType ? Could be easier to read for OPC UA
clients. => to be discussed

Option 2:
Change back from “HasComponent” back to “HasProperty” with
Variable PackMLVersion, DataTyp String and PropertyType like it
was used in V1.0. The OPC version is available in
NamespaceMetaData
=> Preference

Topic Variable name changed from „UnitCurrentMode” to
“UnitModeCurrent”

Errata Version 1.0

Spec Reference 6.3.3 – Table 4

Mantis Reference

Problem Statement Difference in wording between PackML TR88 and Companion Spec.
Reference “HasComponent” and TypeDefinition as “PropertyType”

Solution Take over wording from PackML TR88 in companion spec and make
it compatible.
Change TypeDefinition from “PropertyType” to
“BaseDataVariableType” to reflect Reference.

Topic Spelling variable “Parameter” changed

Errata Version 1.0

Spec Reference 6.3.3

Mantis Reference

Problem Statement Name „Parameters“ different to PackML Document

Solution Change name from „Parameters“ to “Parameter” to make it
compliant to PackML TR88.
Typo fixing in Typedefinition from “BasedDataVariableType” to
“BaseDataVariableType”

 See also 6.3.4 – Table 5, PackMLAdminObjectType – change from
“Parameters” to “Parameter”

Topic Variable “MaterialInterlock” - TypeDefiniton and Modelling Rule

Errata Version 1.0

Spec Reference 6.3.3

Mantis Reference

Problem Statement Harmonize Types between PackML TR88 and Companion Spec

OPC 30050: PackML 75 RC 1.01

Solution In TR88 MaterialInterlock is an array of Boolean. No need for
OptionalPlaceholder rule, replaced by Optional.
OptionalPlaceholder made it possible to define several
MaterialInterlock arrays. This is not in line with TR88.
DataType only as Boolean, no need for PackML specific
TypeDefinition.
PackML specific TypeDefiniton “InterlockVariableType” replaced by
“BaseDataVariableType”.

Topic Variable “RemoteParameter” – Typo fixed, DataType and
TypeDefiniton changed

Errata Version 1.0

Spec Reference 6.3.3

Mantis Reference

Problem Statement Different spelling from RemoteParameters in PackML and
companion spec and wrong DataType

Solution “RemoteParameter” instead of “RemoteParameters” to harmonize
comp spec compliant to PackML TR88.
Assign to DataType “PackMLRemoteInterfaceDataType” instead of
“PackMLDescriptorDataType”. DataType was specified but not
linked to RemoteParameter Variable
Typo fixing in TypeDefinition from “BasedDataVariableType” to
“BaseDataVariableType”

Topic Spelling variable “Products” changed

Errata Version 1.0

Spec Reference 6.3.3

Mantis Reference

Problem Statement Name „Products“ different to PackML Document

Solution Change name from „Products“ to “Product” to make it compliant to
PackML TR88.

Topic TypeDefinition and Modelling Rule changed for Alarm,
AlarmHistory, Warning, StopReason

Errata Version 1.0

Spec Reference 6.3.4 – Table 5

Mantis Reference

Problem Statement Reduction of PackML specific TypeDefinitions

Solution In TR88 Alarm, AlarmHistory, Warning and StopReason is an array
of structure. No need for OptionalPlaceholder rule, replaced by
Optional. OptionalPlaceholder made it possible to define several
Alarm arrays. This is not in line with TR88.

PackML specific TypeDefinitons replaced by
“BaseDataVariableType” instead of “PackMLAlarmVariableType”.
Harmonization with TypeDefinition from “Parameter”,
“RemoteParameter” and “Product” in 6.3.3 – Table 4

StopReason changed from array to single structure to harmonize
with TR88

Topic Description PackML StateMachines

Errata Version 1.0

OPC UA for PackML 76 RC 1.01

Spec Reference 6.3.5

Mantis Reference

Problem Statement Short description and Clear as typo from parent statemodel

Solution Extended description and fixing parent state from “Clear” to
“Cleared” like in the rest of the document

Topic PackMLBaseStateMachineType – Initial State

Errata Version 1.0

Spec Reference 6.3.6

Mantis Reference

Problem Statement Adopting companion spec to PackML leading document

Solution Change from parent state “Cleared” as initialStateType to “Stopped”
as possible initial state in the state model

Topic Transfer table to template design

Errata Version 1.0

Spec Reference 6.3.6

Mantis Reference

Problem Statement Validation Tool labeled table 7 „PackMLBaseStateMachineType” as
non-conform

Solution Transfer table in compliant table as defined in the companion spec
template

Topic Transfer table to template design

Errata Version 1.0

Spec Reference 6.3.7

Mantis Reference

Problem Statement Validation Tool labeled table 9 „PackMLMachineStateMachineType”
as non-conform

Solution Transfer table in compliant table as defined in the companion spec
template

Topic Transfer table to template design

Errata Version 1.0

Spec Reference 6.3.8

Mantis Reference

Problem Statement Validation Tool labeled table 11 „
PackMLExecuteStateMachineType” as non-conform

Solution Transfer table in compliant table as defined in the companion spec
template

Topic Transfer from PackML specific VariableTypes in
BaseDataVariableType

Errata Version 1.0

Spec Reference 6.4.1 & 6.4.2

Mantis Reference

Problem Statement Reduction of PackML specific Variable Types

Solution InterlockVariableType and PackMLCountVariableType replaced by
BaseDataVariableType

Topic Extend PackMLCountDataType Structure

Errata Version 1.0

Spec Reference 6.5.3

Mantis Reference

OPC 30050: PackML 77 RC 1.01

Problem Statement Variables were missing in compliance to TR88

Solution Extend structure with “Name” – Type String and “Unit” – Type
EUInformation

Topic Adopt SetUnitMode Method parameter

Errata Version 1.0

Spec Reference 6.7.2

Mantis Reference

Problem Statement 1. Adopt parameter to PackML wording.
2. Remove parameter “ModeSelection” from method call

because of redundant and unnecessary information in the
method call. Information available in parameter
“UnitSupportedModes” from statusobject

Solution 1. Change parameter from “ModeSelectionRequestedMode” to
“RequestedMode”. Similar to TR88, shorter and without
losing information

2. Remove ModeSelection

 SetUnitMode(

 [in] NodeId ModeSelection

 [in] Int32 ModeSelectionRequestedMode

);

Topic Parameter “Products” change in SetProduct Method

Errata Version 1.0

Spec Reference 6.7.4

Mantis Reference

Problem Statement Name „Products“ different to PackML Document

Solution Change parameter name from „Products“ to “Product” to make it
compliant to PackML TR88.

Topic Change naming of “ToComplete” Method

Errata Version 1.0

Spec Reference 6.7.9

Mantis Reference

Problem Statement Adopt to PackML wording

Solution Change naming from “ToCompleted” to “ToComplete” to make it
PackML compliant

Topic Replacing single parameter in method “RemoteCommand” by
structure

Errata Version 1.0

Spec Reference 6.7.15

Mantis Reference

Problem Statement Parameter in RemoteCommand Method were used twice as single
element and within the strucutre.

Solution Replacing single parameter by structure “RemoteInterface –
PackMLRemoteInterfaceDataType”

Topic PackMLAlarmVariableType

Errata Version 1.0

Spec Reference 6.8.2.1

Mantis Reference

Problem Statement PackMLAlarmVariableType not used anymore in the companion
spec

Solution deleted

OPC UA for PackML 78 RC 1.01

Topic Annex A – All links to documents and NodeSets must by updated !

Errata Version 1.0

Spec Reference

Mantis Reference

Problem Statement

Solution

	Document History
	Figures
	Tables
	1 Scope
	2 Normative References
	3 Terms, definitions and conventions
	3.1 Overview
	3.2 OPC 10000-1 terms
	3.3 OPC 10000-3 terms
	3.4 OPC 10000-8
	3.5 OPC 10000-9
	3.6 OPC UA PackML Terms
	3.6.1 PackML<Term>
	3.6.1.1 General
	3.6.1.2 PackMLUnit
	3.6.1.3 PackMLTag
	3.6.1.4 PackMLStateModel
	3.6.1.5 PackMLMode

	3.7 Abbreviations and symbols
	3.8 OPC UA Notation

	4 Concept
	4.1 Overview
	4.2 PackML Summary
	4.2.1 Introduction
	4.2.2 Why PackML?
	4.2.3 PackML Elements
	4.2.4 Standard Modes
	4.2.5 Standard States
	4.2.6 Standard Tag Names
	4.2.7 PackML Object Model
	4.2.7.1 Overview
	4.2.7.2 Command Tags
	4.2.7.3 Status Tags
	4.2.7.4 Admin Tags

	4.2.8 Standard Tag Values
	4.2.8.1 Overview
	4.2.8.2 Machine Speed
	4.2.8.3 Material Interlock
	4.2.8.4 Remote Interface Structure

	4.3 OPC UA Summary
	4.3.1 Introduction
	4.3.2 What is OPC UA?
	4.3.3 Basics of OPC UA
	4.3.4 Information Modelling in OPC UA
	4.3.4.1 Concepts
	4.3.4.2 Namespaces
	4.3.4.3 Companion Specifications

	5 Modelling Approach of PackML
	6 PackML Data Representation Model
	6.1 General
	6.2 Instance AddressSpace
	6.3 Objects and ObjectTypes
	6.3.1 Overview
	6.3.2 PackMLBaseObjectType
	6.3.3 PackMLStatusObjectType
	6.3.4 PackMLAdminObjectType
	6.3.5 StateMachines Overview
	6.3.6 PackMLBaseStateMachineType
	6.3.7 PackMLMachineStateMachineType
	6.3.8 PackMLExecuteStateMachineType

	6.4 Variables and VariableTypes
	6.5 DataTypes
	6.5.1 Overview
	6.5.2 ProductionMaintenanceModeEnum
	6.5.3 PackMLCountDataType
	6.5.4 PackMLDescriptorDataType
	6.5.5 PackMLIngredientsDataType
	6.5.6 PackMLProductDataType
	6.5.7 PackMLRemoteInterfaceDataType

	6.6 ReferenceTypes
	6.6.1 HasInterlock
	6.6.2 HasAlarm
	6.6.3 HasAlarmHistory
	6.6.4 HasWarning
	6.6.5 HasStopReason

	6.7 Methods
	6.7.1 Overview
	6.7.2 SetUnitMode Method
	6.7.3 SetMachSpeed Method
	6.7.4 SetProduct Method
	6.7.5 Abort Method
	6.7.6 Clear Method
	6.7.7 Stop Method
	6.7.8 Reset Method
	6.7.9 ToComplete Method
	6.7.10 Start Method
	6.7.11 Unhold Method
	6.7.12 Suspend Method
	6.7.13 Unsuspend Method
	6.7.14 Hold Method
	6.7.15 RemoteCommand Method
	6.7.16 SetInterlock Method
	6.7.17 SetParameter Method

	6.8 Alarms
	6.8.1 Overview
	6.8.2 Alarm Tags
	6.8.2.1 Overview
	6.8.2.2 PackMLAlarmDataType

	6.8.3 Alarm Events

	7 Profile
	7.1 Conformance Unit
	7.1.1 Overview
	7.1.2 Server
	7.1.3 Client

	7.2 Facet
	7.2.1 Overview
	7.2.2 Server
	7.2.2.1 PackML Base Server Facet

	7.2.3 Client
	7.2.3.1 PackML Base Client Facet

	8 Namespaces
	8.1 Namespace Metadata
	8.2 Handling of OPC UA namespaces

	Annex A (normative): PackML Namespace and Mappings
	A.1 Namespace and identifiers for PackML Information Model

	Annex B (informative): Recommended localized names
	B.1 Recommended state names for StateMachine Variables
	B.1.1 LocaleId “en”
	B.1.2 LocaleId “de”
	B.1.3 LocaleId “fr”

	Annex C : DataType (Non-Normative)
	C.1 Mapping of elementary data types
	C.2 Mapping of generic data types
	C.3 Mapping of derived data types
	C.3.1 Mapping of enumerated data types
	C.3.2 Mapping of array data types

	Annex D : Revision / Change Log
	D.1 Main changes from V1.00 to V1.01

